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ABSTRACT: In recent years, the use of machine learning (ML) in computational
chemistry has enabled numerous advances previously out of reach due to the computational
complexity of traditional electronic-structure methods. One of the most promising
applications is the construction of ML-based force fields (FFs), with the aim to narrow
the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The
key idea is to learn the statistical relation between chemical structure and potential energy
without relying on a preconceived notion of fixed chemical bonds or knowledge about the
relevant interactions. Such universal ML approximations are in principle only limited by the
quality and quantity of the reference data used to train them. This review gives an overview
of applications of ML-FFs and the chemical insights that can be obtained from them. The
core concepts underlying ML-FFs are described in detail, and a step-by-step guide for
constructing and testing them from scratch is given. The text concludes with a discussion of
the challenges that remain to be overcome by the next generation of ML-FFs.
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1. INTRODUCTION

In 1964, physicist Richard Feynman famously remarked “that
all things are made of atoms, and that everything that living
things do can be understood in terms of the jigglings and
wigglings of atoms”.1 As such, an atomically resolved picture
can provide invaluable insights on biological (and other)
processes. The first molecular dynamics (MD) study of a
protein in 1977 by McCammon et al.2 did not consider explicit
solvent molecules and was limited to less than 10 ps of
simulation. Still, it challenged the (at that time) common belief
that proteins are essentially rigid structures3 and, instead,
suggested that the interior of proteins behaves more fluid-like.
Since then, systems consisting of more than a million atoms
have been studied,4 simulation times extended to the
millisecond regime,5 and the study of entire viruses in atomic
detail made possible.6,7 Recently, a distributed computing
effort even allowed to study the viral proteome of SARS-CoV-2
for a total of 0.1 s of simulation time.8

To perform MD simulations, typically, the Newtonian
equations of motion are integrated numerically, which requires
knowledge of the forces acting on individual atoms at each
time step of the simulation.9 In principle, the most accurate

way to obtain these forces is by solving the Schrödinger
equation (SE), which describes the physical laws underlying
most chemical phenomena and processes.10 Unfortunately, an
analytic solution is only possible for two-body systems such as
the hydrogen atom. For larger chemical structures, the SE can
only be solved approximately. However, even with approx-
imations, an accurate numerical solution is a computationally
demanding task. For example, the CCSD(T) method (coupled
cluster with singles, doubles and perturbative triples), which is
widely regarded as the “gold standard” of chemistry (as its
predictions compare well with experimental results),11 scales
∝N7 with the number of atoms N. (Strictly speaking, the true
scaling of the CCSD(T) method is n( )7 , where n is the
number of basis functions used for the wave function ansatz.
Depending on the desired accuracy and which atoms are
present (more precisely, how many electrons are in their
shells), n can vary greatly. However, the number of atoms is
usually a good proxy.) Because of this, it is unfeasible to
calculate the forces for many different configurations of large
chemical systems, which is required for running MD
simulations, with accurate methods. Instead, simple empirical
functions are commonly used to model the relevant
interactions. From these so-called force fields (FFs), atomic
forces can be readily derived analytically.
Most conventional FFs model chemical interactions as a

sum over bonded and nonbonded terms.12,13 The former can
be described with simple functions of the distances between
directly bonded atoms, or angles and dihedrals between atoms
sharing some of their bonding partners. The nonbonded terms
consider pairwise combinations of atoms, typically by
modeling electrostatics with Coulomb’s law (assuming a
point charge at each atom’s position) and dispersion with a
Lennard-Jones potential.14 Because of the computational
efficiency of these terms, such classical FFs allow to study
systems consisting of many thousands of atoms. However,
while offering a qualitatively reasonable description of chemical
interactions, the quality of MD simulations, and hence the
insights that can be obtained from them, are ultimately limited

Figure 1. Accurate ab initio methods are computationally demanding and can only be used to study small systems in gas phase or regular periodic
materials. Larger molecules in solution, such as proteins, are typically modeled by force fields, empirical functions that trade accuracy for
computational efficiency. Machine learning methods are closing this gap and allow to study increasingly large chemical systems at ab initio accuracy
with force field efficiency.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c01111
Chem. Rev. 2021, 121, 10142−10186

10143

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01111?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01111?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01111?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01111?fig=fig1&ref=pdf
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c01111?ref=pdf


by the accuracy of the underlying FF.15 This is particularly
problematic when polarization, or many-body interactions in
general, are of significant importance, as these effects are not
adequately modeled by the terms described above. While it is
possible to construct polarizable FFs16−19 or account for other
important effects, for example, anisotropic charge distribu-
tions,20,21 to improve accuracy (in exchange for computational
efficiency), it is not always clear a priori when such
modifications are necessary. Beyond that, conventional FFs
require a preconceived notion of bonding patterns and thus
cannot describe bond breaking or bond formation. While there
exist reactive FFs offering an approximated description of
reactions,22−24 they are often not sufficiently accurate for
quantitative studies or restricted to specific types of reactions.
Mixed quantum mechanics/molecular mechanics (QM/MM)
treatments25 pose an alternative solution: Here, the SE is only
solved for a small part of the system where high accuracy is
required or reactions may take place, for example, the active
site of an enzyme. Meanwhile, all remaining atoms are treated
at the FF level of accuracy. Although this is more efficient than
a pure quantum-mechanical approach, it is often necessary to
model a large number of atoms at the QM level for converged
results,26 which is still highly computationally demanding.

In a “dream scenario” for computational chemists and
biologists, it would be possible to treat even large systems at
the highest levels of theory, which would require prohibitively
large computational resources in the real world. Machine
learning (ML) methods could help to achieve this dream in a
principled manner, thus closing the gap between the accuracy
of ab initio methods and the efficiency of classical FFs
(Figure 1). ML methods aim to learn the functional relation-
ship between inputs (chemical descriptors) and outputs
(properties) from patterns or structure in the data. Ideally, a
trained learning machine would then reflect the underlying
effective “rules” of quantum mechanics.27 Practically, ML
models can take a shortcut by not having to solve any
equations that follow from the physical laws governing the
structure−property relation. Because of this unique ability, ML
methods have been enjoying growing popularity in the
chemical sciences in recent years. They allow to explore
chemical space and predict the properties of compounds with
both unprecedented efficiency and high accuracy.27−32 ML has
also been used to augment and accelerate traditional methods
used in molecular simulations, for example, for sampling
equilibrium states33,34 and rare events,35 computing reaction
rates,36 exploring protein folding dynamics37 and other
biophysical processes,38−42 Markov state modeling,43−49 and

Figure 2. ML-FFs combine the accuracy of ab initio methods and the efficiency of classical FFs. They provide easy access to a system’s potential
energy surface (PES), which can in turn be used to derive a plethora of other quantities. By using them to run MD simulations on a single PES,
ML-FFs allow chemical insights inaccessible to other methods (see gray box). For example, they accurately model electronic effects and their
influence on thermodynamic observables and allow a natural description of chemical reactions, which is difficult or even impossible with
conventional FFs. Their efficiency also allows them to be applied in situations where the Born−Oppenheimer approximation begins to break down
and a single PES no longer provides an adequate description. An example is the study of nuclear quantum effects and electronically excited states
(upper right). Finally, ML-FFs can be further enhanced by modeling additional properties. This provides direct access to a wide range of molecular
spectra, building a bridge between theory and experiment (lower right). In general, such studies would be prohibitively expensive with ab initio
methods.
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coarse-graining50−53 (for a recent review on applications of ML
in molecular simulatons, see ref 54). Recent advances made it
even possible to predict molecular wave functions, which can
act as an interface between ML and quantum chemistry,55,56 as
knowledge of the wave function allows to deduce many
different quantum mechanical observables at once. ML can
also be combined with more traditional semiempirical
methods, for example by predicting accurate repulsive
potentials for density functional tight-binding approaches.57

Instead of circumventing equations, ML methods can also help
when solving them. They have been used to find novel density
functionals58−60 and solutions of the Schrödinger equa-
tion.61,62 Other promising applications include the generation
of molecular structures to tackle inverse design problems,63−67

or planning chemical syntheses.68

For constructing ML-FFs, suitable reference data to learn
the relevant structure−property relation include energy, forces,
or a combination of both, obtained from ab initio calculations.
Contrary to conventional FFs, no preconceived notion of
bonding patterns needs to be assumed. Instead, all chemical
behavior is learned from the reference data. This allows to
reconstruct the important interactions purely from atomic
positions without imposing a restricted analytical form on the
interatomic potential and enables a natural description of
chemical reactions. For example, it is now possible to construct
ML-FFs for small molecules from CCSD(T) reference data
close to spectroscopic accuracy and with computational
efficiency similar to conventional FFs.69,70 This has enabled
studies that would be prohibitively expensive with conven-
tional methods of computational chemistry and allowed to
obtain novel chemical insights (see Figure 2).
Other properties than energies and forces can be predicted

as well: For example, dipole moments, which are a measure for
how polar molecules are, can be used to calculate infrared
spectra from MD simulations71−73 and allow a comparison to
experimental measurements. Other prediction targets could be
used to screen large compound databases for molecules with
desirable properties several orders of magnitude faster than
with ab initio methods. The HOMO/LUMO gap, which is
important for materials used in electronic devices such as solar
cells,74 is only one prominent example of many potentially
interesting prediction targets.
This review will focus on the construction of ML-FFs for the

usage in MD simulations and other applications (for details on
how to set up such simulations or how to extract physical
insights from them, refer to refs 75−77). The text is structured
as follows: Section 2 reviews fundamental concepts of
chemistry (Section 2.1) and machine learning (Section 2.2)
relevant to the construction of ML-FFs and discusses special
considerations when the two are combined (Section 2.3). As
this article is intended for both chemists and machine learning
practitioners, these sections provide all readers with the
necessary background to understand the remainder of the
review. Experts in either field may want to skip over the
respective sections, as they discuss fundamentals. The next part
(Section 3) serves as a step-by-step guide and reference for
readers that want to apply ML-FFs in their own research. Here,
the best practices for constructing ML-FFs are outlined,
possible problems that may be encountered along the way
(and how to avoid them) are discussed and an overview of
several software packages, which may be used to accelerate the
construction of ML-FFs, is provided. Section 4 lists several
applications of ML-FFs described in the literature and

highlights physical and chemical insights made possible
through the use of ML. The review is concluded in Section
5 by a discussion of obstacles that still need to be overcome to
extend the applicability of ML-FFs to an even broader context.

2. MATHEMATICAL AND CONCEPTUAL FRAMEWORK
Section 2.1 reviews important chemical concepts such as the
potential energy surface and invariance properties of physical
systems, which are essential for constructing physically
meaningful models. It is meant as a short summary of the
most important physical principles and fundamental chemical
knowledge for readers with a primarily ML-focused back-
ground who are interested in constructing ML-FFs. On the
other hand, to offer readers with a chemical background a first
orientation, an overview of two important methodologies in
Machine Learning, namely kernel-based learning approaches
and artificial neural networks, is given in Section 2.2. Finally,
Section 2.3 lists constraints related to the physical invariances
mentioned earlier and gives examples of models for
constructing ML-FFs and how they implement these
constraints in practice.
2.1. Chemistry Foundations

The Schrödinger equation (SE),78 which describes the
interaction of atomic nuclei and electrons, is sufficient for
understanding most chemical phenomena and processes.10

Unfortunately, it can only be solved analytically for very simple
systems, such as the hydrogen atom. For more complex
systems like molecules, exact numerical solutions are often
impractical due to a steep increase of computational costs as a
function of system size. For this reason, numerous approx-
imation schemes have been devised to enable insights into
more complicated chemical systems. Virtually all of these are
based on the Born−Oppenheimer (BO) approximation,79

which decouples electronic and nuclear motion so that the
latter can be neglected. It is assumed that electrons adjust
instantaneously to changes in the nuclear positions, which is
motivated by the observation that atomic nuclei are heavier
than electrons by several orders of magnitude, thus moving on
a vastly different time scale. Hence, the nuclear positions
appear almost stationary to the electrons and therefore enter
the resulting “electronic SE” only parametrically: The energy of
the electrons depends on the external potential caused by the
nuclei, which in turn is fully determined by their positions and
nuclear charges. By summing electronic energy and Coulomb
repulsion between nuclei, the total potential energy of the
system is obtained, which is one of the most important
properties of molecules. Alongside entropic contributions, it
determines the relative stability of different compounds,
whether reactions are exothermic or endothermic, and can
even serve as proxy for more complex properties. For example,
the potency of some drugs can be estimated from their binding
energy to biomolecules.80

2.1.1. Potential Energy Surface. By introducing a
parametric dependency between energy and nuclei, the BO
approximation implies the existence of a functional relation

{ } →=f Z Er: ,i i i
N

1 , which maps the nuclear charges Zi and
positions ri of N atoms directly to their potential energy E.
This function, called the potential energy surface (PES),
governs the dynamics of a chemical system, similar to a ball
rolling on a hilly landscape. Minima (“valleys”) on the PES
correspond to stable molecules and significant structural
changes (or even chemical reactions) occur when a system
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crosses over a transition state (“ridge”) from one minimum
into another (Figure 3).

Knowledge of the PES therefore also allows to predict how a
system evolves over time. For example, by studying a thermal
ensemble of molecules starting from the same minimum on the
PES, it is possible to determine which fraction of them will
reach different minima and in what time frame, allowing to
assess their reactivity and which products are formed. It is also
possible to deduce the macroscopic thermodynamic properties
of a system by studying how it behaves at an atomic level. In
such molecular dynamics (MD) simulations, a classical
treatment of nuclear dynamics is sometimes sufficiently
accurate. In case of significant nuclear delocalization, which
may occur in systems with light atoms, strong bonds, or for
shallow potential energy landscapes,81 nuclear quantum effects
(NQEs) must be included as well. Even then, methods like
path-integral MD establish a one-to-one correspondence
between the properties of a quantum object and a classical
system with an extended phase space, eliminating the need to
solve the nuclear SE.82−84

At each time step of a dynamics simulation, the forces Fi
acting on each atom i must be known so that the equations of
motion can be integrated numerically (e.g., using the Verlet
algorithm85). They can be derived from the PES by using the
relation Fi = −∇riE, that is, the forces are the negative gradient
of the potential energy E with respect to the atomic positions ri
(see also Section 2.1.2). Forces can also be used to perform
geometry optimizations, e.g., to find special configurations of
atoms which correspond to critical points on the PES. For
example, the height of a reaction barrier can be computed from
the energy difference between the saddle point (transition

state) and either of the two minima (equilibrium structures)
which are connected by it.
Although the BO approximation simplifies the SE, even

approximate solutions can be computationally demanding, in
particular for large systems containing many degrees of
freedom. Thus, it is often unfeasible to derive ab initio
energies and forces for each time step of an MD simulation.
For this reason, analytical functions known as force fields
(FFs), are typically used to represent the PES, circumventing
the problem of solving an equation altogether. The difficulty is
then shifted to finding an appropriate functional form and
parametrization of the FF. ML methods automate this
demanding and time-consuming process by learning an
appropriate function from reference data.

2.1.2. Invariances of Physical Systems. Closed physical
systems are governed by various conservation laws that
describe invariant properties. They are fundamental principles
of nature that characterize symmetries that must not be
violated. As such, conservation laws provide strong constraints
that can be used as guiding principles in search of physically
plausible ML models. The basic invariances of molecular
systems are directly derived from Noether’s theorem,86 which
states that each conserved quantity is associated with a
differentiable symmetry of the action of a physical system.
Typical conserved quantities include the total energy
(following from temporal invariance) as well as angular and
linear momentum (rototranslational invariance). Energy
conservation imposes a particular structure on vector fields
in order for them to be valid force fields with corresponding
potentials. Namely, forces must be the negative gradient of the
potential energy with respect to atomic positions. This relation
ensures that when atoms move, they always acquire the same
amount of kinetic energy as they lose in potential energy (and
vice versa), i.e., the total energy is constant (the work done
along closed paths is zero). The conservation of linear and
angular momentum implies that the potential energy of a
molecule only depends on the relative position of its atoms to
each other and does not change with rigid rotations or
translations. Another invariance (not derived from Noether’s
theorem) follows from the fact that, from the perspective of the
electrons, atoms with the same nuclear charge appear identical
to each other. They can thus be exchanged without affecting
the energy and forces, which makes the PES symmetric with
respect to permutations of some of its arguments. To ensure
physically meaningful predictions, ML-FFs must be made
invariant under the same transformations as the true PES by
introducing appropriate constraints.

2.2. Machine Learning Foundations

A question that frequently arises for researchers new to the
field of ML concerns the difference of ML modeling to plain
interpolation in the noise free regression case. After all, the
Shannon sampling theorem gives bounds for the number of
“training samples” needed to reconstruct a band-limited signal
exactly.87 Since the regression tasks considered in this review
use ab initio data as reference, they can be considered
practically noise-free. Furthermore, PESs are usually smooth,
which means there is a well-defined frequency cutoff in the
spectrum of this “signal”. Thus, both requirements for Shannon
interpolation are satisfied and it should in principle be possible
to reconstruct FFs via interpolation of the training samples
without error, provided there are enough of them.

Figure 3. Top: Two-dimensional projections of the PESs of different
molecules, highlighting rich topological differences and various
possible shapes. Bottom: Cut through the PES of keto-malondialde-
hyde for rotations of the two aldehyde groups. Note that the shape
repeats periodically for full rotations. Regions with low potential
energy are drawn in blue and high energy regions in yellow. Structure
(a) leads to a steep increase in energy due to the proximity of the two
oxygen atoms carrying negative partial charges. Local minima of the
PES are shown in (b) and (c), whereas (d) displays structural
fluctuations around the global minimum. By running molecular
dynamics simulations, the most common transition paths (F1, F2, and
F3) between the different minima could be revealed.
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This is where ML diverges from signal interpolation theory.
In practice, there is often not enough data available to fully
capture all the necessary information for a perfect reconstruc-
tion. In that case, the goal of ML methods is not to recover the
training data, but rather to estimate the true process with its
underlying regularities that also describes all new and unseen
data; this is often denoted as generalization. The key to
generalization is selecting a model based on the well-known
principle of Occam’s razor, i.e., the notion that simpler
hypotheses are more likely to be correct.88 The capacity of the
model can be controlled using the bias−variance trade-off89 (a
compromise between expressiveness and complexity) and is
practically done by exercising model selection techniques (see
Section 2.2.3) such as cross-validation that leave out part of the
data from the ML training process and use it later to obtain a
valid estimate of the generalization error.30,90 The reason why
regularization is often needed is that ML algorithms are
universal approximators that can approximate any continuous
function on a closed interval arbitrarily close. Since for a finite
amount of reference data infinitely many such functions are
thinkable, a regularization mechanism is often needed to select
a preferably simple function from the vast space of possibilities.
ML methods typically rely on the fact that nonlinear

problems, such as predicting energy from nuclear positions,
can be “linearized” by mapping the input to a (often higher-
dimensional) “feature space” (see Figure 4).90−93 Note that

such feature spaces are explicitly constructed for kernel-based
learning methods (see Section 2.2.1) or learned respectively
for deep learning models94 (see Section 2.2.2). Kernel-based
methods achieve this by taking advantage of the so-called
kernel trick,92,95−98 which allows implicitly operating in a high-
dimensional feature space without explicitly performing any
computation there. In contrast, artificial neural networks
(NNs) decompose a complex nonlinear function into a
composition of linear transformations with learnable parame-
ters connected by nonlinear activation functions. With
increasingly many of such nonlinear transformations organized
in “layers” (deep NNs), it is possible to efficiently learn highly
complex feature spaces.
While NNs tend to require more training data to reach the

same accuracy as kernel methods (see Figure 5),99 they
typically scale better to larger data sets. In general, neither
method is strictly superior over the other,100 and both have
advantages and disadvantages that must be weighed against
each other for a specific application. Recently, it has even been
discovered that in the limit of infinitely wide layers, deep NNs
are equivalent to kernel methods, which shifts the main
differentiating factor between both methodologies to how they
are constructed and trained101,102 and makes deep NNs
accessible to kernel-based analysis methods.103,104

In the following, kernel methods and neural networks are
described in more detail to highlight the most important
properties that differentiate both methodologies.

2.2.1. Kernel-Based Methods. Given a data set
{(yi; xi)}i = 1

M of M reference values ∈ yi for inputs

∈ x ,i
D kernel regression aims to estimate

*
y for unknown

inputs *x . For example, for PES construction, y is the potential
energy and x encodes structural information about the atoms,
i.e., their nuclear charges and relative positions in space.
Popular choices for such “descriptors” are vectors of internal
coordinates, Coulomb matrices,28 representations of atomic
environments (e.g., symmetry functions,116 SOAP117 or
FCHL106,107), or an encoding of crystal structure.118−120 See
ref 121 for a recent review on structural descriptors.
The representer theorem states that the functional relation

= + ϵy f x( ) (1)

where ϵ denotes measurement noise, can be optimally
approximated as a linear combination

∑ α≈ ̂ =
=

f f Kx x x x( ) ( ) ( , )
i

M

i i
1 (2)

where αi are coefficients, and K(x, x′) is a (typically nonlinear)
symmetric and positive semidefinite function122−124 that
measures the similarity of two compound descriptors x and
x′ (see Figure 7). (The function K(x, x′) computes the inner
product of two points ϕ(x) and ϕ(x′) in some Hilbert space

(the feature space) without the need to evaluate (or even
know) the mapping ϕ →: D explicitly, i.e., K(x, x′) is a
reproducing kernel of .90,125) Examples for such functions K
are the polynomial kernel

′ = ⟨ ′⟩ +K cx x x x( , ) ( , )d
(3)

where hyperparameter d is the degree of the polynomial and
⟨·, ·⟩ is the dot product, or the Gaussian kernel given by

′ = γ− − ′K ex x( , ) x x 2

(4)

with hyperparameter γ controlling its width/scale and ∥·∥
denoting the L2-norm (see refs 30, 90, 97, and 126 for more
examples of kernel functions).

Figure 4. (A) Blue and red points with coordinates (x1, x2) are
linearly inseparable. (B) By defining a suitable mapping from the
input space (x1, x2) to a higher-dimensional feature space (x1, x2, x3),
blue and red points become linearly separable (gray plane at x3 = 0.5).

Figure 5. Mean absolute force prediction errors (MAEs) of different
ML models trained on molecules in the MD17 data set,105 colored by
model type. Overall, kernel methods (GDML,105 sGDML,69

FCHL18/19106,107) are slightly more data efficient, that is, they
produce more accurate predictions with smaller training data sets, but
neural network architectures (PhysNet,108 SchNet,109 DimeNet,110

EANN,111 DeePMD,112 DeepPot-SE,113 ACSF,114 HIP-NN115) catch
up quickly with increasing training set size and continue to improve
when more data for training is available.
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The structure and number of dimensions of the associated
Hilbert space depends on the choice of K(x, x′) and
dimension of the inputs x and x′. As an example, consider the
polynomial kernel (eq 3) with degree d = 2 and two-
dimensional inputs. The corresponding homogeneous
( c = 0 ) p o l y n om i a l m a p p i n g i s g i v e n b y
ϕ →x x x x x x: ( , ) ( , 2 , )1 2 1

2
1 2 2

2 , so the associated is
three-dimensional. While in this case, it is still possible to
compute ϕ and evaluate the inner product of two points ϕ(x)
and ϕ(x′) explicitly, the advantage of using kernels becomes
apparent when the Gaussian kernel (eq 4) is considered.
Rewriting eq 4 as

′ = γ γ γ− − ′ ⟨ ′⟩K e e ex x( , ) x x x x2 ,2 2

(5)

and expanding the third factor in a Taylor series
γ= ∑ ⟨ ′⟩γ⟨ ′⟩

=
∞

!e x x(2 , )d d
dx x2 ,

0
1 reveals that the Gaussian kernel

is equivalent to an infinite sum over (scaled) polynomial
kernels (see eq 3) and the associated is ∞-dimensional.
Fortunately, by using the kernel function K(x, x′), it is possible
to operate in implicitly and evaluate ̂f (x) (eq 2) without
computing the mapping ϕ. This is often referred to as the
kernel trick.90,92,95−97,126

It remains the question how the coefficients αi in eq 2 are
determined. One way to do so is by adopting a Bayesian, or
probabilistic, point of view.127,128 Here, it is assumed that the
reference data {(yi; xi)}i = 1

M are generated by a Gaussian process
(GP), i.e., drawn from a multivariate Gaussian distribution. For
simplicity, it can be assumed that this distribution has a mean
of zero, as other values can be generated by simply adding a
constant term. Further, the possibility that the reference data
might be contaminated by noise (for example due to
uncertainties in measuring yi) is accounted for explicitly.
Typically, Gaussian noise is assumed, i.e.,

λ= +y f x( ) (0, )i i (6)

where λ is the variance of the normally distributed noise . In
the GP picture, the choice of K(x, x′) expresses an assumption
about the underlying function class. For example, choosing the
Gaussian kernel implies that f(x) does not change drastically
over a length scale controlled by γ (see eq 4). As such, a
particular kernel function K corresponds to an implicit
regularization, i.e., an assumption about the underlying
smoothness properties of the function to be estimated.129

The challenge lies in finding a kernel that represents the
structure in the data that is being modeled as good as
possible.103,129 Many kernels are able to approximate
continuous functions on a compact subset arbitrarily
well,129,130 but a strong prior has the advantage of restricting
the hypothesis space, which drastically improves the
convergence of the learning task with respect to the available
training data.131

Under these conditions, it is now possible to rigorously
answer the question “given the data y = [y1···yM]

T, how likely is
it to observe the value

*
y for input *x ?” As

*
y is generated by

the same GP as the reference data, the conditional probability

*
p y y( ) can be expressed as

λ

*
∼

+ *

* * *
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(7)

where IM is the identity matrix of size M, K is the M × M
kernel matrix90,132 with entries Kij = K(xi, xj) and *K =
[ * ··· * ]K Kx x x x( , ) ( , )M1 . In other words, eq 7 expresses a
probability distribution over possible predictions, where its
mean value

λ
*̅

= * + −y K K I y( )M
1

(8)

is the most likely estimate for
*

y (given the reference data) and
its variance

λ
*

= * * − * + *
−y K x x K K I Kvar( ) ( , ) ( )N

1 T
(9)

provides information about how strongly other likely
predictions vary from the mean. Note that while eq 9 can be
used as uncertainty estimate for a particular prediction, it
should not be confused with error bars. The optimal
coefficients α = [α1···αM] in eq 2 are thus given by

α λ= + −K I y( )M
1

(10)

or simply α = K−1y in the noise-free case (λ = 0). However,
even in the absence of noise, it can be beneficial to choose a
nonzero λ to obtain a regularized solution. The addition of
λ > 0 to the diagonal of K increases numerical stability and has
the effect of damping the magnitude of the coefficients, thereby
increasing the smoothness of ̂f (x). The downside is that the
known reference values yi are only approximately reproduced.
This, however, also decreases the chance of overfitting and can
lead to better generalization, that is, increased accuracy when
predicting unknown values.
Matrix factorization methods like Cholesky decomposi-

tion133 are typically used to efficiently solve the linear problem
in eq 10 in closed form. However, this type of approach scales
as (M 3) with the number of reference data and may become
problematic for extremely large data sets. Iterative gradient-
based solvers can reduce the complexity to M( )2 .134 Once
the coefficients have been determined, the value

*
y for an

arbitrary input *x can be estimated according to eq 2 with
M( ) complexity (a sum over all M reference data points is

required).
Alternatively, a variety of approximation techniques exploit

that kernel matrices usually have a small numerical rank, i.e., a
rapidly decaying eigenvalue spectrum. This enables approx-
imate factorizations RRT ≈ K, where R is either a rectangular
matrix ∈ ×M L with L < M or sparse. As a result, eq 10
becomes easier to solve, albeit the result will not be
exact.135−139

A straightforward approach to approximate a linear system is
to pick a representative or random subset of L points x̃ from
the data set (in principle, even arbitrary x ̃ could be chosen)
and construct a rectangular kernel matrix ∈ ×KLM

L M with
entries KLM,ij = K (x ̃, xj). Then the corresponding coefficients
can be obtained via the Moore-Penrose pseudoinverse:140,141

α λ̃ = + − −K K K y(1 ) ( )LM LM LM
1 T 1

(11)

Solving eq 11 scales as ML( )2 and is much less computa-
tionally demanding than inverting the original matrix in eq 10.
Once the L coefficients α̃ are obtained, the model can be
evaluated with ̂f (x) = ΣL α̃iK(x, x̃i), i.e., an additional benefit is
that evaluation now scales as L( ) instead of M( ) (see eq 2).
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However, the approximation above gives rise to an
overdetermined system with fewer parameters than training
points and therefore reduced model capacity. Strictly speaking,
the involved matrix does not satisfy the properties of a kernel
matrix anymore, as it is neither symmetric nor positive
semidefinite. To obtain a kernel matrix that still maintains
these properties, the Nyström135 approximation

≈ ̃ = −K K K K KLM LL LM
T 1

(12)

can be used instead. Here, the submatrix KLL is a true kernel
matrix between all inducing points x̃i. Using the Woodbury
matrix identity,142 the regularized inverse is given by

λ λ λ̃ + = [ − + ]− − −K I I K K K K K( ) ( )M M LM LL LM LM LM
1 1 T T 1

(13)

and α λ̃ = ̃ + −K I( ) yM
1 . The computational complexity of

solving the Nyström approximation is +L ML( )3 2

It should be mentioned that kernel regression methods are
known under different names in the literature of different
communities. Because of their relation to GPs, some authors
prefer the name Gaussian process regression (GPR). Others
favor the term kernel ridge regression (KRR), since
determining the coefficients with eq 10 corresponds to solving
a least-squares objective with L2-regularization in the kernel
feature space ϕ and is similar to ordinary ridge regression.143

Sometimes, the method is also referred to as reproducing
kernel Hilbert space (RKHS) interpolation, since eq 2
“interpolates” between known reference values (when
coefficients are determined with λ = 0, all known reference
values are reproduced exactly). All these methods are formally
equivalent and essentially differ only in the manner the relevant
equations are derived. There are small philosophical differ-
ences, however: For example, in the KRR and RKHS pictures,
λ in eq 10 is a regularization hyperparameter that has to be
introduced ad hoc, whereas in the GPR picture, λ is directly

Figure 6. Overview of the mathematical concepts that form the basis of kernel methods. (A) Gaussian process regression of a one-dimensional
function f(x) (red line) from M = 5 data samples (xi, yi). The black line ̂f (x) depicts the mean (eq 8) of the conditional probability p(

*
y |y) (see eq

7), whereas the gray area depicts two standard deviations from its mean (see eq 9). Note that predictions are most confident in regions where
training data is present. (B) Function ̂f (x) can be expressed as a linear combination of M kernel functions K(x, xi) weighted with regression
coefficients αi (see eq 2). In this example, the Gaussian kernel (eq 4) is used (the hyperparameter γ controls its width). (C) Influence of noise on
prediction performance. Here, the function f(x) (thick gray line) is learned from M = 25 samples, however, each data point (xi, yi) contains
observational noise (see eq 6). When the coefficients αi are determined without regularization, i.e., no noise is assumed to be present, the model
function reproduces the training samples faithfully, but undulates wildly between data points (orange line, λ = 0). The regularized solution (blue
line, λ = 0.1, see eq 10) is much smoother and stays closer to the true function f(x), but individual data points are not reproduced exactly. When the
regularization is too strong (green line, λ = 1.0), the model function becomes unable to fit the data. Note how regularization shrinks the magnitude
of the coefficient vectors ∥α∥. (D) For constructing force fields, it is necessary to encode molecular structure with a representation x. The choice of
this structural descriptor may strongly influence model performance. Here, the potential energy E of a diatomic molecule (thick gray line) is learned
from M = 5 data points by two kernel machines using different structural representations (both models use a Gaussian kernel). When the
interatomic distance r is used as descriptor (orange line, x = r), the predicted potential energy oscillates between data points, leading to spurious
minima and qualitatively wrong behavior for large r. A model using the descriptor x = e−r (blue line) predicts a physically meaningful potential
energy curve that is qualitatively correct even when the model extrapolates.
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related to the Gaussian noise in eq 6. The expansion
coefficients obtained from eq 10 can change drastically
depending on the choice of λ, so this is an important detail.
Further, while eq 9 can be used to compute uncertainty
estimates for all kernel regression methods, the GPR picture
allows to relate it directly to the variance of a Gaussian process.
The most important concepts discussed in this section are

summarized visually in Figure 6.

2.2.2. Artificial Neural Networks. Originally, artificial
neural networks (NNs) were, as suggested by their name,
intended to model the intricate networks formed by biological
neurons.144 Since then, they have become a standard ML
algorithm94,98,144−150 only remotely related to their original
biological inspiration. In the simplest case, the fundamental
building blocks of NNs are dense (or “fully-connected”)
layers−linear transformations from input vectors ∈ x nin to
output vectors ∈ y nout according to

= +y Wx b (14)

where both weights ∈ ×W n nout in and biases ∈ b nout are
parameters, and nin and nout denote the number of dimensions
of x and y, respectively. Evidently, a single dense layer can only
express linear functions. Nonlinear relations between inputs
and outputs can only be modeled when at least two dense
layers are stacked and combined with a nonlinear activation
function σ:

σ= +

= ′ + ′

h Wx b

y W h b

( ),

(15)

Provided that the number of dimensions of the “hidden layer”
h is large enough, this arrangement can approximate any
mapping between inputs x and outputs y to arbitrary precision,
i.e., it is a general function approximator.151,152

In theory, shallow NNs as shown above are sufficient to
approximate any functional relationship.152 However, deep
NNs with multiple hidden layers are often superior and were
shown to be more parameter-efficient.153−156 To construct a
deep NN, L hidden layers are combined sequentially

σ

σ

σ

= +

= +

= +

= +
−

+ +

∂

h W x b

h W h b

h W h b

y W h b

( ),

( ),

( ),L L L L

L L L

1 1 1

2 2 1 2

1

1 1 (16)

mapping the input x to several intermediate feature
representations hl, until the output y is obtained by a linear
regression on the features hL in the final layer. For PES
construction, typically, the NN maps a representation of
chemical structure x to a one-dimensional output representing
the energy. Contrary to the coefficients α in kernel methods
(see eq 10), the parameters {Wl,bl}l = 1

L + 1 of an NN cannot be
fitted in closed form. Instead, they are initialized randomly and
optimized (usually using a variant of stochastic gradient
descent) to minimize a loss function that measures the
discrepancy between the output of the NN and the reference
data.157 A common choice is the mean squared error (MSE),
which is also used in kernel methods. During training, the loss
and its gradient are estimated from randomly drawn batches of
training data, making each step independent of the number of
training data M. On the other hand, finding the coefficients for
kernel methods scales as M( )3 due to the need of inverting
theM ×M kernel matrix. Evaluating an NN according to eq 16
for a single input x scales linearly with respect to the number of
model parameters. The same is true for kernel methods, but
here the number of model parameters is tied to the number of
reference data M used for training the model (see eq 2), which
means that evaluating kernel methods scales M( ). As the
evaluation cost of NNs is independent of M and only depends
on the chosen architecture, they are typically the method of
choice for learning large data sets. A schematic overview of the
mathematical concepts behind NNs is given in Figure 8.

2.2.3. Model Selection: How to Choose Hyper-
parameters. In addition to the parameters that are
determined when learning an ML model for a given data set,
for example, the weights W and biases b in NNs or the
regression coefficients α in kernel methods, many models
contain hyperparameters that need to be chosen before
training. They allow to tune a given model to the prior beliefs
about the data set/underlying physics and thus play a
significant role in how a model generalizes to different data
patterns. Two types of hyperparameters can be distinguished.
The first kind influences the composition of the model itself,
such as the type of kernel or the NN architecture, whereas the
second kind affects the training procedure and thus the final
parameters of the trained model. Examples for hyper-
parameters are the width (number of neurons per layer) and

Figure 7. Kernel ridge regression can be understood as a linear
integral operator Tk that is applied to the (only partially known)
target function of interest f(x). Such operators are defined as
convolutions with a continuous kernel function K, whose response is
the regression result. Because the training data is typically not
sampled on a grid, this convolution task transforms to a linear system
that yields the regression coefficients α. Because only Tkf(x) and not
the true f(x) is recovered, the challenge is to find a kernel that defines
an operator that leaves the relevant parts of its original function
invariant. This is why the Gaussian kernel (eq 4) is a popular choice:
Depending on the chosen length scale γ, it attenuates high frequency
components, while passing through the low frequency components of
the input, therefore making only minimal assumptions about the
target function. However, stronger assumptions (e.g., by combining
kernels with physically motivated descriptors) increase the sample
efficiency of the regressor.
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depth (number of hidden layers) of an NN, the kernel width γ
(see eq 4), or the strength of regularization terms (e.g., λ in
eq 10).
The range of valid values is strongly dependent on the

hyperparameter in question. For example, certain hyper-
parameters might need to be selected from the positive real
numbers (e.g., γ and λ, see above), while others are restricted
to positive integers or have interdependencies (such as depth
and width of an NN). This is why hyperparameters are often
optimized with primitive exhaustive search schemes like grid
search or random search in combination with educated guesses
for suitable search ranges, or more sophisticated Bayesian
approaches.158 Common gradient-based optimization methods

can typically not be applied effectively. Fortunately, for many
hyperparameters, model performance is fairly robust to small
changes and good default values can be determined, which
work across many different data sets.
Before any hyperparameters may be optimized, a so-called

test set must be split off from the available reference data and
kept strictly separate. The remainder of the data is further
divided into a training and a validation set. This is done
because the performance of ML models is not judged by how
well they predict the data they were trained on, as it is often
possible to achieve arbitrarily small errors in this setting.
Instead, the generalization error, that is, how well the model is
able to predict unseen data, is taken as indicator for the quality

Figure 8. Schematic representation of the mathematical concepts underlying artificial (feed-forward) neural networks. (A) A single artificial neuron
can have an arbitrary number of inputs and outputs. Here, a neuron that is connected to two inputs i1 and i2 with “synaptic weights” w1 and w2 is
depicted. The bias term b can be thought of as the weight of an additional input with a value of 1. Artificial neurons compute the weighted sum of
their inputs and pass this value through an activation function σ to other neurons in the neural network (here, the neuron has three outputs with
connection weights w′1, w′2, and w′3). (B) Possible activation function σ(x). The bias term b effectively shifts the activation function along the x-
axis. Many nonlinear functions are valid choices, but the most popular are sigmoid transformations such as tanh(x) or (smooth) ramp functions, for
example, max(0, x) or ln(1 + ex). (C) Artificial neural network with a single hidden layer of three neurons (gray) that maps two inputs x1 and x2
(blue) to two outputs y1 and y2 (yellow), see eq 15. For regression tasks, the output neurons typically use no activation function. Computing the
weighted sums for the neurons of each layer can be efficiently implemented as a matrix vector product (eq 14). Some entries of the weight matrices
(W and W′) and bias vectors (b and b′) are highlighted in color with the corresponding connection in the diagram. (D) Schematic depiction of a
deep neural network with L hidden layers (eq 16). Compared to using a single hidden layer with many neurons, it is usually more parameter-
efficient to connect multiple hidden layers with fewer neurons sequentially.

Figure 9. Overview of model selection process.
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of a model. For this reason, for every trial combination of
hyperparameters, a model is trained on the training data and its
performance measured on the validation set to estimate the
generalization error. Finally, the best performing model is
selected. To get better statistics for estimates of the
generalization error, instead of splitting the remaining data
(reference data excluding test set) into just two parts, it is also
possible to divide it into k parts (or folds). Then a total of k
models is trained, each using k − 1 folds as the training set and
the last fold as validation set. This method is known as k-fold
cross-validation.30,159

As the validation data influence model selection (even
though it is not used directly in the training process), the
validation error may give too optimistic estimates and is no
reliable way to judge the true generalization error of the final
model. A more realistic value can be obtained by evaluating the
model on the held-out test set, which has neither direct nor
indirect influence on model selection. To not invalidate this
estimate, it is crucial not to further tweak any parameters or
hyperparameters in response to test set performance. More
details on how to construct ML models (including the
selection of hyperparameters and the importance of keeping an
independent test set) can be found in Section 3. The model
selection process is summarized in Figure 9.

2.3. Combining Machine Learning and Chemistry

The need for ML methods often arises from the lack of theory
to describe a desired mapping between input and output. A
classical example for this is image classification: It is not clear
how to distinguish between pictures of different objects, as it is
unfeasible to formulate millions of rules by hand to solve this
task. Instead, the best results are currently achieved by learning
statistical image characteristics from hundreds of thousands of
examples that were extracted from a large data set representing
a particular object class. From that, the classifier learns to
estimate the distribution inherent to the data in terms of
feature extractors with learned parameters like convolution
filters that reflect different scales of the image statistics.94,98,101

This working principle represents the best approach known to
date to tackle this particular challenge in the field of computer
vision.
On the other hand, the benchmark for solving molecular

problems is set by rigorous physical theory that provides
essentially exact descriptions of the relationships of interest.
While the introduction of approximations to exact theories is
common practice and essential to reduce their complexity to a
workable level, those simplifications are always physical or
mathematical in nature. This way, the generality of the theory
is only minimally compromised, albeit with the inevitable
consequence of a reduction in predictive power. In contrast,
statistical methods can be essentially exact, but only in a
potentially very narrow regime of applicability. Thus, a main
role of ML algorithms in the chemical sciences has been to
shortcut some of the computational complexity of exact
methods by means of empirical inference, as opposed to
providing some mapping between input and output at all (as is
the case for image classification). Notably, recent develop-
ments could show that machine learning can provide novel
insight beyond providing efficient shortcuts of complex
physical computations.33,55,59,62,70,105,160,161

Force field construction poses unique challenges that are
absent from traditional ML application domains, as much more
stringent demands on accuracy are placed on ML approaches

that attempt to offer practical alternatives to established
methods. Additionally, considerable computational cost is
associated with the generation of high-level ab initio training
data, with the consequence that practically obtainable data sets
with sufficiently high quality are typically not very large. This is
in stark contrast with the abundance of data in traditional ML
application domains, such as computer vision, natural language
processing etc. The challenge in chemistry, however, is to
retain the generality, generalization ability and versatility of ML
methods, while making them accurate, data-efficient, trans-
ferable, and scalable.

2.3.1. Physical Constraints. To increase data efficiency
and accuracy, ML-FFs can (and should) exploit the invariances
of physical systems (see Section 2.1.2), which provide
additional information in ways that are not directly available
for other ML problems. Those invariances can be used to
reduce the function space from which the model is selected, in
this manner effectively reducing the degrees of freedom for
learning,69,162 making the learning problem easier and thus also
solvable with a fraction of data. As ML algorithms are universal
approximators with virtually no inherent flexibility restrictions,
it is important that physically meaningful solutions are
obtained. In the following, important physical constraints of
such solutions and possible ways of their realization are
discussed in detail. Furthermore, existing kernel-based
methods and neural network architectures tailored for the
construction of FFs and how they implement these physical
constraints in practice are described.

2.3.1.1. Energy Conservation. A necessary requirement for
ML-FFs is that, in the absence of external forces, the total
energy of a chemical system is conserved (see Section 2.1.2).
When the potential energy is predicted by any differentiable
method and forces derived from its gradient, they will be
conservative by construction. However, when forces are
predicted directly, this is generally not true, which makes
deriving energies from force samples slightly more compli-
cated. The main challenge to overcome is that not every vector
field is necessarily a valid gradient field. Therefore, the learning
problem cannot simply be cast in terms of a standard multiple
output regression task, where the output variables are modeled
without enforcing explicit correlations. A big advantage of
predicting forces directly is that they are true quantum-
mechanical observables within the BO approximation by virtue
of the Hellmann−Feynman theorem,163,164 i.e., they can be
calculated analytically and therefore at a relatively low
additional cost when generating ab initio reference data. As a
rough guideline, the computational overhead for analytic forces
scales with a factor of only around ∼1−7 on top of the energy
calculation.165 In contrast, at least 3N + 1 energy evaluations
would be necessary for a numerical approximation of the forces
by using finite differences. For example, at the PBE0/DFT
(density functional theory with the Perdew−Burke−Ernzerhof
hybrid functional) level of theory,166 calculating energy and
analytical forces for an ethanol molecule takes only ∼1.5 times
as long as calculating just the energy (the exact value is
implementation-dependent), whereas for numerical gradients,
a factor of at least ∼10 would be expected.
As forces provide additional information about how the

energy changes when an atom is moved, they offer an efficient
way to sample the PES, which is why it is desirable to
formulate ML models that can make direct use of them in the
training process. Another benefit of a direct reconstruction of
the forces is that it avoids the amplification of estimation errors
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due to the derivative operator that would otherwise be applied
to the PES reconstruction (see Figure 10).58,70,105

2.3.1.2. Rototranslational Invariance. A crucial require-
ment for ML-FFs is the rotational and translational invariance
of the potential energy, i.e., = +E ER R( ) ( ), where and

are rigid rotations and translations and R are the Cartesian
coordinates of the atoms. As long as the representation x(R) of
chemical structure chosen as input for the ML model itself is
rototranslationally invariant, ML-FFs inherit its desired
properties and even the gradients will automatically behave
in the correct equivariant way due to the outer derivative
∂ + ∂ = ∂ ∂x R R x R R( ( )/ ( )/ . One example of appropri-
ate features to construct a representation x with the desired
properties are pairwise distances. For a system with N atoms,

there are ( )N
2 different pairwise distances that result in

reasonably sized feature sets for systems with a few dozen
atoms. Apart from very few pathological cases, this
representation is complete, in the sense that any possible
configuration of the system can be described exactly and
uniquely.117 However, while pairwise distances serve as an
efficient parametrization of some geometry distortions like
bond stretching, they are relatively inefficient in describing
others, for example, rotations of functional groups. In the latter
case, many distances are affected even for slight angular
changes, which can pose a challenge when trying to learn the
geometry-energy mapping. Complex transition paths or
reaction coordinates are often better described in terms of
bond and torsion angles in addition to pairwise distances. The
problem is that the number of these features grows rather

quickly, with ( )N
3 and ( )N

4 , respectively. At that rate, the size

of the feature set quickly becomes a bottleneck, resulting in
models that are slow to train and evaluate. While an expert
choice of relevant angles would circumvent this issue, it
reduces some of the “data-driven” flexibility that ML models
are typically appreciated for. Note that models without
rototranslational invariance are practically unusable, as they
may start to generate spurious linear or angular momentum
during dynamics simulations.
2.3.1.3. Indistinguishability of Identical Atoms. In the BO

approximation, the potential energy of a chemical system only
depends on the charges and positions of the nuclei. As a
consequence, the PES is symmetric under permutation of
atoms with the same nuclear charge. However, symmetric
regions are not necessarily sampled in an unbiased way during
MD simulations (see Figure 11). Consequently, ML-FFs that
are not constrained to treat all symmetries equivalently may

predict different results when permuting atoms (due to the
uneven sampling).

While it is in principle possible to arrive at a ML-FF that is
symmetric with respect to permutations of same-species atoms
indirectly via data augmentation29,169 or by simply using data
sets that naturally include all relevant symmetric configurations
in an unbiased way, there are obvious scaling issues with this
approach. It is much more efficient to impose the right
constraints onto the functional form of the ML-FF such that all
relevant symmetric variants of a certain atomic configuration
appear equivalent automatically. Such symmetric functions can
be constructed in various ways, each of which has advantages
and disadvantages.
Assignment-based approaches do not symmetrize the ML-

FF per se, but instead aim to normalize its input, such that all
symmetric variants of a configuration are mapped to the same
internal representation. In its most basic realization, this
assignment is done heuristically, that is, by using inexact, but
computationally cheap criteria. Examples for this approach are
the Coulomb matrix28 or the Bag-of-Bonds31 descriptors, that
use simple sorting schemes for this purpose. Histograms107,170

and some density-based117,171,172 approaches follow the same
principle, although not explicitly. All of those schemes have in
common that they compare the features in aggregate as
opposed to individually. A disadvantage is that dissimilar
features are likely to be compared to each other or treated as
the same, which limits the accuracy of the prediction. Such
weak assignments are better suited for data sets with diverse
conformations rather than gathered from MD trajectories that
contain many similar geometries. In the latter case, the

Figure 10. Differentiation of an energy estimator (blue) versus direct force reconstruction (red). The law of energy conservation is trivially obeyed
in the first case but requires explicit a priori constraints in the latter scenario. The challenge in estimating forces directly lies in the complexity
arising from their high 3N-dimensionality (three force components for each of the N atoms) in contrast to predicting a single scalar for the energy.

Figure 11. Regions of the PESs for ethanol, keto-malondialdehyde
and aspirin visited during a 200 ps ab initio MD simulation at 500 K
using the PBE+TS/DFT level of theory167,168 (density functional
theory with the Perdew−Burke−Ernzerhof functional and Tkatch-
enko-Scheffler dispersion correction). The black dashed lines indicate
the symmetries of the PES. Note that regions related by symmetry are
not necessarily visited equally often.
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assignment of features might change as the geometry evolves,
which would lead to discontinuities in the prediction and
would effectively be treated by the ML model as noise (see ϵ in
eq 1).
An alternative path is to recover the true correspondence of

molecular features using a graph matching approach.173,174

Each input x is matched to a canonical permutation of atoms
x̃ = Px before generating the prediction. This procedure
effectively compresses the PES to one of its symmetric
subdomains (see dashed black lines in Figure 11), but in an
exact way. Note that graph matching is in all generality an NP-
complete problem which can only be solved approximately. In
practice, however, several algorithms exist to ensure at least
consistency in the matching process if exactness can not be
guaranteed.175 A downside of this strategy is that any input
must pass through a matching process, which is relatively
costly, despite being approximate. Another issue is that the
boundaries of the symmetric subdomains of the PES will
necessarily lie in the extrapolation regime of the reconstruction
in which prediction accuracy tends to degrade. As the molecule
undergoes symmetry transformations, these boundaries are
frequently crossed, to the detriment of prediction performance.
Arguably the most universal way of imposing symmetry,

especially if the functional form of the model is already given, is
via invariant integration over the relevant symmetry group
fsym(x) = ∫ π∈S f(Pπ x). Typically, would be the permutation
group and Pπ the corresponding permutation matrix
that transforms each vector of atom positions x. Some
approaches117,176,177 avoid this implicit ordering of atoms in
x by adopting a three-dimensional density representation of the
molecular geometry defined by the atom positions, albeit at the
cost of losing rotational invariance, which then must be
recovered by integration. Invariant integration gives rise to
functional forms that are truly symmetric and do not require
any pre- or postprocessing of the in- and output data. A
significant disadvantage is, however, that the cardinality of even
basic symmetry groups is exceedingly high, which affects both
training and prediction times.
This combinatorial challenge can be solved by limiting the

invariant integral to the physical point group and fluxional
symmetries that actually occur in the training data set. Such a
subgroup of meaningful symmetries can be automatically
recovered and is often rather small.165 For example, each of the
molecules benzene, toluene and azobenzene have only 12
physically relevant symmetries, whereas their full symmetric
groups have orders 6!6!, 7!8!, and 12!10!2! symmetries,
respectively.
2.3.2. (Symmetric) Gradient Domain Machine Learn-

ing ((s)GDML). Gradient domain machine learning (GDML)
is a kernel-based method introduced as a data efficient way to
obtain accurate reconstructions of flexible molecular force
fields from small reference data sets of high-level ab initio
calculations.105 Contrary to most other ML-FFs, instead of
predicting the energy and obtaining forces by derivation with
respect to nuclear coordinates, GDML predicts the forces
directly. As mentioned in Section 2.3.1, forces obtained in this
way may violate energy conservation. To ensure conservative
forces, the key idea is to use a kernel K (x, x′) =∇xKE(x, x′)∇x′

T

that models the forces F as a transformation of an unknown
potential energy surface E such that

μ=−∇ ≈ [−∇ ∇ ′ ∇ ]′E KF x x x( ), ( , )E Ex x
T

(17)

Here, μ → :E
D and × →  K :E

D D are the prior
mean and covariance functions of the latent energy-based
Gaussian process , respectively. The descriptor of chemical
structure ∈ x D consists of the inverse of all D pairwise
distances, which guarantees rototranslational invariance of the
energy. Training on forces is motivated by the fact that they
are available analytically from electronic structure calculations,
with only moderate computational overhead atop energy
evaluations. The big advantage is that for a training set of size
M, only M reference energies are available, whereas there are
three force components for each of the N atoms, that is, a total
of 3NM force values. This means that a kernel-based model
trained on forces contains more coefficients (see eq 2) and is
thus also more flexible than an energy-based variant.
Additionally, the amplification of noise due to the derivative
operator is avoided.
A limitation of the GDML method is that the structural

descriptor x is not permutationally invariant because the values
of its entries (inverse pairwise distances) change when atoms
are reordered. An extension of the original approach,
sGDML69,165 (symmetric GDML), additionally incorporates
all relevant rigid space group symmetries, as well as dynamic
nonrigid symmetries of the system at hand into the kernel, to
further improve its efficiency and ensure permutational
invariance. Usually, the identification of symmetries requires
chemical and physical intuition about the system at hand,
which is impractical in an ML setting. Here, however, a data-
driven multipartite matching approach is employed to
automatically recover permutations of atoms that appear
within the training set.165 A matching process finds
permutation matrices P that realize the assignment between
adjacency matrices = ⃗ − ⃗r rA( )ij i j of molecular graph pairs

G and H in different energy states

τ
τ τ τ= −P A P Aarg min ( ) ( ) ( )G H

T 2
(18)

and thus between symmetric transformations.178 The resulting
approximate local pairwise assignments are subsequently
globally synchronized using transitivity as the consistency
criterion175 to eliminate impossible assignments. By limiting
this search to the training set, combinatorially feasible, but
physically irrelevant permutations τ are automatically excluded
(ones that are inaccessible without crossing impassable energy
barriers). Such hard symmetry constraints (derived from the
training set) greatly reduce the intrinsic complexity of the
learning problem without biasing the estimator since no
additional approximations are introduced.

2.3.3. Gaussian Approximation Potentials (GAPs).
Gaussian approximation potentials (GAPs)179 were originally
developed for materials such as bulk crystals, but were later
also applied to molecules.180 They scale linearly with the
number of atoms of a system and can accommodate for
periodic boundary conditions. Similar to high-dimensional
neural network potentials114 (see Section 2.3.4), GAPs
decompose each system into atom-centered environments i
such that its energy can be written as the sum of atomic
contributions

∑= { }
=

∈[ ]( )E E r
i

N

i ij j N
1

1,
(19)
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with rij = rj − ri and ri being the position of atom i. A smooth
cutoff function is applied to the pairwise distances ∥rij∥ to
ensure that the contributions Ei are local and no discontinuities
are introduced when atoms enter or leave the cutoff radius.
Even though such a decomposition is inherently nonunique
and no labels for atom-wise energies are available in the
reference data, they can still be approximated by a Gaussian
process. The sum over atomic environments can be moved
into the kernel function, yielding a kernel for systems x and x′
with N and N′ atoms, respectively:

∑ ∑′ = ′
= =

′

K K x xx x( , ) ( , )
i

N

j

N

i j
1 1

local
(20)

Thus, reference energies for the whole system are sufficient for
the model to learn a suitable energy decomposition into atomic
environments.
Several descriptors and kernels for GAPs have

been developed based on a local “atomic density”
ρ(r) = ∑jδ(r − rj). Initially, Bartoḱ et al.179 proposed to
employ local atomic coordinates projected onto a 4D hyper
sphere. Since this projection can represent the volume of a 3D
sphere, the introduction of an additional radial basis can be
avoided. To achieve rotational invariance, the bispectrum of
4D spherical harmonics of these coordinates was used as a
descriptor. Alternatively, the SOAP (smooth overlap of atomic
positions) kernel117 is defined as the integral over rotations
of atomic densities

∫ ∫ρ ρ ρ ρ′ = ′K r r r( , ) d ( ) ( )d
n

(21)

Given smoothed local densities ρ(r) = ∑j exp(−γ∥r − rj∥2), it
has been shown that the SOAP kernel is equivalent to the
linear kernel over the SO(3) power spectrum and bispectrum
for n = 2 and n = 3, respectively.117 Both approaches are
invariant to permutation of neighboring atoms as well as the
rotation of the local environment. Further representations
include best matches of the atomic densities over rotations177

and kernels for symmetry-adapted prediction of tensorial
properties.181,182

2.3.4. Neural Network Potentials. The first neural
network potentials (NNPs) used a set of internal coordinates,
for example, distances and angles, as structural representation
to model the PES.183−187 While being rototranslationally
invariant, internal coordinates impose an arbitrary order on the
atoms and are thus not reflecting the equivalence of permuted
inputs. As a result, the NNP might assign different energies to
symmetrically equivalent structures. Beyond that, the number
of atoms influences the dimensionality of the input x, limiting
the applicability of the PES to chemical systems of the same
size. Decomposing the energy prediction in the spirit of a
many-body expansion circumvents these issues,188−190 how-
ever, it scales unfavorably with system size and number of
chemical species, because each term in the many-body
expansion has to be modeled by a separate NN.
Behler and Parrinello114 were the first to propose so-called

high-dimensional neural networks potentials (HDNNPs),
where the total energy of a chemical system is expressed as a
sum over atomic contributions E = ∑i Ei , predicted by the
same NN (or one for each element). The underlying
assumption is that the energetic contribution Ei of each atom
depends mainly on its local chemical environment. As all atoms
of the same type are treated identically and summation is

commutative, the output does not change when the input is
permuted. Because of the decomposition into atomic
contributions, systems with varying numbers of atoms can be
predicted by the same NNP. In principle, this framework also
enables transferability between system sizes, for example, a
model can be trained on small systems, but applied to predict
energies and forces for larger systems. However, this requires
sufficient sampling of the local environments to remove
spurious correlations caused by the training data distribution,
as well as corrections for long-range effects.
The introduction of HDNNPs inspired many NN

architectures that can be broadly categorized into two types.
Descriptor-based NNPs116,191−193 rely on fixed rules to encode
the environment of an atom in a vector x, which is then used as
input for an ordinary feed-forward NN (see eq 16). These
architectures include many variants of the original Behler-
Parrinello network, such as ANI194 and TensorMol.195 On the
other hand, end-to-end NNPs160,196−198 take nuclear charges
and Cartesian coordinates as input and learn a suitable
representation from the data.
Many end-to-end NNPs have been inspired by the graph

neural network by Scarselli et al.199 and were later collectively
cast as message-passing neural networks (MPNNs).198 In this
type of model, molecules are regarded as undirected graphs,
where atoms are represented by nodes and interactions
between them as edges. By exchanging information between
nodes along edges (message-passing), complex chemical
interactions can be modeled. A prominent example is the
Deep Tensor Neural Network (DTNN).160 Since its
introduction, this approach has been refined to create new
architectures, such as SchNet,109,200 HIP-NN,115 or Phys-
Net.108 End-to-end NNPs that do not directly fall into the
category of MPNNs are covariant compositional networks that
are able to employ features of higher angular momen-
tum201−203 as well as models using a pseudodensity as input.172

Because no fixed rule is used to construct descriptors, end-
to-end NNPs are able to automatically adapt the environment
representations x to the reference data (in contrast to the
descriptor-based variant). However, as long as x is invariant
with respect to translation, rotation, and permutation of
symmetry equivalent atoms, both types of NNPs adhere to all
physical constraints outlined in Section 2.3.1. NNPs are
commonly used to predict energies, while conservative forces
are obtained by derivation. Despite being energy-based, it is
still possible to incorporate information from ab initio forces by
including them in the loss term optimized during training. At
this point, it should be noted that the requirement for
continuously differentiable models excludes the use of certain
activation functions, for example the popular ReLU activa-
tion,204 when constructing ML-FFs based on neural networks.
To avoid discontinuities in the forces, activation functions used
for NNPs must always be smooth.

2.3.4.1. Descriptor-Based NNPs. The first descriptor-based
NNP introduced by Behler and Parrinello114 uses atom-
centered symmetry functions (ACSFs)116 consisting of two-
body terms
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and three-body terms
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to encode information about the chemical environment of each
atom i. Here, rij is the distance between atoms i and j, θijk the
angle spanned by atoms i, j and k centered around i, and the
summations run over all atoms within a cutoff distance rcut. As
the atom order is irrelevant for the values of Gi

2 and Gi
3 and

only internal coordinates are used to calculate them, all
physical invariants are satisfied. A cutoff function such as
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ensures that Gi
2 and Gi

3 vary smoothly when atoms enter or
leave the cutoff sphere and the parameters η, rs, ζ, and
λ(= ± 1) determine to which distances, or combinations of
angles and distances, the ACSFs are most sensitive. When
sufficiently many Gi

2 and Gi
3 with different parameters are

combined and stored in a vector xi, they form a “fingerprint” of
the local environment of atom i. This environment descriptor
is then used as input for a neural network for predicting the
energy contributions Ei of atoms i and the total energy
E =∑iEi is obtained by summation.
Since the ACSFs only use geometric information, they work

best for systems containing only atoms of one element, for
example crystalline silicon.114 To describe multicomponent
systems, typically, the symmetry functions are duplicated for
each combination of elements and separate NNs are used to
predict the energy contributions for atoms of the same type.205

Since the combinatorial explosion can lead to a large number
of ACSFs for systems containing many different elements, an
alternative is to modify the ACSFs with element-dependent
weighting functions.206 Most descriptor-based NNPs, such as
ANI194 and TensorMol,195 use variations of eqs 22 and 23
(sometimes allowing parameters of ACSFs to be optimized
during training) to construct the environment descriptors xi.
Different ways to encode the structural information are
possible, for example using three-dimensional Zernike
functions,191 or the coefficients of a spherical harmonics
expansion,193 but the general principle remains the same. Also,
while most descriptor-based NNPs use separate parametriza-
tions for different elements, it is also possible to use a single
NN to predict all atomic energy contributions.193 The
common feature for all variations of this approach is that the
functional form of the environment descriptor is predeter-
mined and manually designed.
2.3.4.2. End-to-End NNs. A potential drawback of the

previously introduced ACSFs is that they must be chosen by an
expert before training the neural network. If the choice of
symmetry functions is poor, for example when the resulting
descriptor is (nearly) identical for two very different structures,
the expressive power of the neural network and the achievable
accuracy are limited a priori. Additionally, a growing number of
input dimensions can quickly become computationally
expensive, both for calculating the descriptors and for
evaluating the NN. This is especially the case when modeling
multicomponent systems, where commonly orthogonality is
assumed between different elements (which increases the

number of input dimensions) or the descriptors are simply
weighted by an element-dependent factor (which may limit the
structural resolution of the descriptor).
In contrast, end-to-end NNPs directly take atomic types and

positions as inputs to learn suitable representations from the
reference data. Similar to descriptor-based NNPs, many end-
to-end NNPs obtain the total energy E as a sum of atomic
contributions Ei. However, those are predicted from learned
features xi encoding information about the local chemical
environment of each atom i. This allows them to adapt the
features based on the size and distribution of the training set as
well as the chemical property of interest during the training
process. The idea is to learn a mapping to a high-dimensional
feature space, so that structurally (and energetically) similar
atomic environments lie close together and dissimilar ones far
apart.
Within the deep tensor neural network framework,160 this is

achieved by iteratively refining the atomic features xi based on
neighboring atoms. The features are initialized to xi

2 = eZi
,

where eZ are learnable element-dependent representations that
are updated for T ∈ [3, 6] steps. This procedure is inspired by
diffusion graph kernels207 as well as the graph neural network
model by Scarselli et al.199 Many end-to-end networks have
adapted this approach which can be written in general as
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where the summation runs over all atoms within a distance rcut
and a cutoff function fcut ensures smooth behavior when atoms
cross the cutoff. Here, the “atom-wise” function t is used to
refine the atomic features after they have been updated with
information from neighboring atoms through the interaction-
function t . Usually, the interatomic distance rij is not used
directly as input to t , but expanded in a set of uniformly
spaced radial basis functions108,109,160 to form a vectorial input
g(rij). Both

t and t functions are NNs with the specific
implementations varying between different end-to-end NNP
architectures. As only pairwise distances are used and the order
of atoms is irrelevant due to the commutative property of
summation, the features xi obtained by eq 25 are automatically
rototranslationally and permutationally invariant (and thus also
the energy predictions).
Gilmer et al.198 have cast graph networks of this structure as

message-passing neural networks and proposed a variant that
uses a set2set decoder208 instead of a sum over energy
contributions to achieve permutational invariance of the
energy. SchNet109 takes an alternative view of the problem
and models interactions between atoms with convolutions.
The convolution filters need to be continuous (to have smooth
predictions) but are evaluated at finite points, i.e., the positions
of neighboring atoms. To ensure rotational invariance, only
radial convolution filters are used, leading again to an
interaction function that is a special case of eq 25.
While the previously introduced approaches aim to learn as

much as possible from the reference data, several models have
been proposed to better exploit chemical domain knowledge.
The hierarchical interacting particle neural network (HIP-
NN)115 obtains the prediction as a sum over atom-wise
contributions Ei

t that are predicted after every update step t. A
regularizer penalizes larger energy contributions in deeper
layers, enforcing a declining, hierarchical prediction of the
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energy. PhysNet108 modified the energy function to include
explicit terms for electrostatic and dispersion interactions

∑ ∑ ∑ χ= + ̃ ̃ +
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where ED3 is Grimme’s D3 dispersion correction,209 ke is
Coulomb’s constant, and q̃i are corrected partial charges
predicted by the network that are guaranteed to sum to the
total charge of the molecule. In an ablation study on a data set
of SN2 reactions,210 it was shown that the inclusion of long-
range terms improves prediction accuracy for energies and
forces while models without these terms show qualitatively
wrong asymptotic behavior.108

3. BEST PRACTICES AND PITFALLS
A number of careful modeling steps are necessary to construct
an ML-FF for a particular problem of interest (Figure 13).
Even before starting this process, some forethought is
appropriate due to certain limitations of ab initio methods
themselves. This section gives an overview about all steps
necessary to construct an ML-FF from scratch and highlights
possible “pitfalls”, that is, issues that may occur along the way,
in particular when the recommended practices are not
followed. First, some preliminary considerations, which should
be taken before starting with the construction of an ML-FF, are
discussed (Section 3.1). Next, basic principles for choosing an
appropriate ML method for a specific task are given (Section
3.2). Then the importance of high quality reference data,
different strategies to collect it (Section 3.3), and how the data
has to be prepared (Section 3.4) are outlined. This is followed
by an overview of how to train an ML model on the collected
data (Section 3.5) and guidelines for using the trained ML-FF
in a production setting, for example, for running MD
simulations (Section 3.6). Finally, popular software packages
for constructing ML-FFs are briefly described and code
examples are given (Section 3.7).
3.1. Preliminary Considerations

Before running any ab initio calculations to collect data for
training ML models, it is advisable to think about the
limitations of the chosen level of theory itself. The issues
discussed here are problem-specific and often not unique to
ML-FFs, but PES reconstruction in general. As such, a
comprehensive list is not possible, but a few examples are
given below.
3.1.1. Practicability. On the spectrum of quantum

chemistry methods, ML-FFs fit into the niche between highly
efficient conventional FFs211 and accurate, but computationally
expensive ab initio methods.212 Efficiency-wise, they are still
inferior to classical FFs, because their functional forms are
considerably more complex and thus more expensive to
evaluate. Even the fastest ML-FFs are still one to three orders
of magnitude slower.165,213,214 On the other end, ML-FFs are
lower bounded by the accuracy of the reference data used for
training, which means that the underlying ab initio method will
always be at least equally accurate. In practical terms, this
means that to be useful, ML-FFs need to offer time savings
over directly running ab initio calculations and an improved
accuracy compared to conventional FFs. For this purpose, the
full procedure of data generation, training and inference must
be taken into account, as opposed to just regarding inference
speed, which will be much quicker than ab initio methods.

While this consideration sounds trivial at first, it is still
advisable to think about whether constructing an ML-FF really
is economical. For example, if the goal is to run just a single
short MD trajectory, the question is how much data is
necessary for the model to reach the required accuracy. Some
models may require several thousands of training points to
produce accurate enough predictions, even for fairly small
molecules. Then when factoring in the overall time required
for going through the process of creating the ML model,
testing it, and running the MD simulation, it might be more
efficient to simply run an ab initio MD simulation in the first
place. Further, not every ML method is equally applicable or
appropriate for all systems due to methodical or conceptual
constraints. Such limitations are discussed in greater detail in
Section 3.2.

3.1.2. Multireference Effects.Many ab initio methods use
a single Slater determinant to express the wave function of a
system. The problem with this approach is that different
determinants may be dominant in different regions of the PES,
leading to a poor description of the wave function if the wrong
determinant is chosen. Especially when many calculations are
performed for various strongly distorted geometries, for
example when a reaction is studied and bonds need to be
broken, it may happen that the solution “jumps” discontinu-
ously from one electronic state to another, leading to
inconsistent reference data. When an ML model is trained
on such a data set, it will try to find a compromise between the
inconsistencies and its performance typically be unsatisfying. It
is therefore advisable to check for possible multireference
effects prior to generating data and, if necessary, switch to a
multireference method (for a comprehensive review on
multireference methods, see ref 215).

3.1.3. Strong Delocalization. The models discussed in
this review all assume that energy contributions are local to
some degree. This assumption is either introduced explicitly by
a cutoff radius, or it enters the model through the use of a
specific structural descriptor. For example, by using inverse
distances to encode chemical structures for kernel methods (as
is done, e.g., in GDML, see Section 2.3.2), relative changes
between close atoms are weighed more strongly when
comparing two conformations. While assuming locality is
valid in many practical applications, there exist many cases
where this assumption breaks down. An example are extensive
conjugated π-systems, where a rotation around certain bonds
might break the favorable interaction between electrons,
leading to a “non-local” energy contribution. If such effects
exist, an appropriate model should be chosen, for example the
cutoff radius may need to be larger than usual or a different
structural descriptor must be picked.

3.2. Choosing an Appropriate ML Method

Several different variants of ML-FFs have been discussed in
Section 2.3, and many more are described in the literature.
Although all these methods can be applied to construct ML-
FFs for any chemical system, some methods might be more
promising than others for certain tasks. For researchers who
want to apply ML methods to a specific problem for the first
time, the abundance of different models to choose from may
be overwhelming and it might be difficult to find an
appropriate choice.
In the following, possible applications of ML-FFs are broadly

categorized based on simple questions about the task at hand.
For each case, advantages and disadvantages of individual
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models are discussed to provide help and guidance to the
reader for identifying an appropriate model for their use case.
How much reference data can be used for training? When

in doubt which method to use, a rule of thumb could be to prefer
kernel methods when there are less than ∼103−104 training points
and NN-based approaches otherwise (but this may also be a
matter of preference).
Depending on the desired accuracy, the amount of ab initio

reference data which can be collected within a reasonable time
frame may be vastly different. For example, if reference
calculations are performed at the DFT level of theory, it is
often feasible to collect several thousands of data points, even
for relatively large molecules. On the other hand, if CCSD(T)
accuracy and a large basis set is required, already a few hundred
reference calculations for small molecules can require a
considerable amount of computing time. Although it is of
course always desirable to perform as few reference
calculations as possible, for some tasks, collecting a large
data set is unavoidable. For example, if a model should be able
to predict a variety of different molecules containing many
different elements, the relevant chemical space must be
sampled sufficiently.
In general, kernel-based models tend to achieve good

prediction accuracies even with few training points, whereas
NNs often need more data to reach their full potential
(although there may be exceptions for both model variants, see
also Figure 5). Further, the optimal model parameters for
kernel models can be determined analytically (see eq 10),
which, at least for small data sets, is typically faster than
training a NN via (a variant of) stochastic gradient descent.
However, when the data set size M is very large, solving eq 10
analytically can become prohibitively expensive as it scales

M( )3 (and requires M( )2 memory to store the kernel
matrix). Further, evaluating kernel models scales with M( )
(see eq 2), whereas the cost of evaluating NN-based methods

has (as long as the number of parameters does not have to be
increased for larger data sets) constant complexity. For this
reason, NNs tend to be more suitable for large data sets. Note
that there are approximations which improve the scaling of
kernel methods (so they can be applied even to very large data
sets) at the cost of accuracy (see eqs 11-13).
Should the model be able to predict a single type of

chemical system or multiple different ones? To be applicable
to multiple systems, a model must decompose its prediction into
atomic contributions. Models that use no such decomposition must
either use a f ixed size descriptor or several separate models need to
be trained.
Some ML-FFs only need to be able to predict systems with a

fixed composition and number of atoms, for example to study
the dynamics of a single molecule, whereas other applications
require the ability to predict different systems with varying size,
for example, when clusters consisting of a different number and
kind of molecules are studied with the same model.
While all ML-FFs can be applied in the first case, the latter

requires either that the length of chemical descriptors is
independent of the number of atoms, or that model
predictions are decomposed into local contributions based
on fixed-size fingerprints of atomic environments (which
naturally makes them extensive). Most NNPs (see Section
2.2.2) and many kernel methods, for example, GAPs (see
Section 2.3.3) or FCHL,106,107 use such a decomposition and
can be applied to differently sized chemical systems without
issues. Exceptions are, for example, (s)GDML models (see
Section 2.3.2), which encode chemical structures as vectors of
inverse distances between atomic pairs. Consequently, the
length of the descriptor changes with the number of atoms and
the model can only be applied to a single type of system. In
some special cases, it may be possible to choose a maximum
descriptor length and pad descriptors of smaller molecules with

Figure 12. Overview of descriptor-based (top) and end-to-end (bottom) NNPs. Both types of architecture take as input a set of N nuclear charges
Zi and Cartesian coordinates ri and output atomic energy contributions Ei, which are summed to the total energy prediction E (here N = 9, an
ethanol molecule is used as example). In the descriptor-based variant, pairwise distances rij and angles αijk between triplets of atoms are calculated
from the Cartesian coordinates and used to compute hand-crafted two-body (G2) and three-body (G3) atom-centered symmetry functions
(ACSFs) (see eqs 22 and 23). For each atom i, the values of M different G2 and K different G3 ACSFs are collected in a vector xi, which serves as a
fingerprint of the atomic environment and is used as input to an NN predicting Ei. Information about the nuclear charges is encoded by having
separate NNs and sets of ACSFs for all (combinations of) elements. In end-to-end NNPs, Zi is used to initialize the vector representation xi

0 of each
atom to an element-dependent (learnable) embedding (atoms with the same Zi start from the same representation). Geometric information is
encoded by iteratively passing these descriptors (along with pairwise distances rij expanded in radial basis functions g(rij)) in T steps through NNs
representing interaction functions t and atom-wise refinements t (see eq 25). The final descriptors xi

T are used as input for an additional NN
predicting the atomic energy contributions (typically, a single NN is shared among all elements).
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zeros, but this may introduce other problems or reduce the
accuracy.
Will the model be applied to single or multicomponent

systems? If only a handful of elements is relevant, all models are
equally suitable. When a large number of elements needs to be
considered, the model should be able to encode and use information
about atom types ef f iciently.
As long as an ML-FF is only applied to single-component

systems (consisting of a single element), for example elemental
carbon or silicon, all relevant information is contained in the
relative arrangement of atoms and nuclear charges need not be
encoded explicitly. However, as soon as there are multiple
atom types (as is common for most applications of ML-FFs),
the model must have some way to distinguish between them. A
notable exception are some models such as (s)GDML, which
use inverse pairwise distances as structural descriptor. Here,
information about atom types is implicitly contained, because
specific entries always correspond to the same combination of
atom types.
Many local descriptors of atomic environments only use

geometric information in the form of distances and angles
between pairs and triplets of atoms (see eqs 22 and 23). To
include information about atomic types, geometric features
have to be included separately for every possible combination
of elements, leading to a drastic increase of descriptor size
(descriptors for kernel machines based, for example, on
SOAP117 or FCHL106,107 also grow in size when the number
of atom types is increased). Many descriptor-based NNPs
further use separate NNs to predict atomic contributions of
different elements (see Figure 12). A disadvantage of these
approaches is that the number of terms in the descriptor
increases combinatorially with the number of elements covered
by the model (in particular if three-body or even four-body
terms are used), which impacts the computational cost of
training and evaluating the model. Also, larger amounts of
training data may become necessary for good results. As long
as only a few elements need to be considered, these downsides
are not an issue, but if a model for a significant fraction of the
periodic table is required, a more efficient representation is
desirable. Most end-to-end NNPs employ so-called element
embeddings (see Figure 12), which do not become more
complex when the number of elements is increased. This has
the additional benefit of potentially increasing the data
efficiency of the model by utilizing alchemical information.
Another alternative is to introduce element-dependent
weighting functions (instead of duplicating terms in ACSF
descriptors).206

Will the model be applied to small or large systems?
Models for very large target systems should be able to exploit
chemical locality, so that reference calculations for f ragments can
be used as training data. Additionally, this allows trivial
parallelization of predictions over multiple machines.
Often, ML-FFs are used to study small or medium-sized

molecules. In such cases, all models are equally applicable. For

very large systems containing many atoms, however, some
methods have particularly advantageous properties. For
example, it might be infeasible to run ab initio calculations
for the full target system. In this case, being able to fragment
the system into smaller parts, for which reference calculations
are affordable, is very useful.
To be trainable on such fragments, ML-FFs must introduce

an explicit assumption about chemical locality by introducing a
cutoff radius. Every method that decomposes predictions into a
sum of local atomic contributions can thus be trained in this
way. ML-FFs without cutoffs on the other hand need reference
data for the complete system (see above). Another advantage
of local models is that their predictions are embarrassingly
parallel. The contributions of individual atoms can be
calculated on separate machines (storing a copy of the
model), each requiring only information about neighboring
atoms within the cutoff radius. Apart from possible efficiency
benefits, this may even become necessary if the computations
to handle all atoms do not fit into the memory of a single
machine (for example when the system of interest consists of
millions of atoms216). Note that while not all ML methods to
construct FFs can be parallelized in this way, most models
contain mostly linear operations, which are amenable to other
parallelization methods, for example, by utilizing GPUs
(graphics processing units).
At this point, a subtle difference between cutoffs used in

NNPs of the message-passing type (see Section 2.3.4) and
descriptor-based NNPs (as well as kernel machines based on
local atomic environments) should be pointed out. In message-
passing schemes, information between all atoms within the
cutoff radius is exchanged over T iterations, thus the effective
cutoff radius increases by a factor of T. This means that to
distribute the computation over multiple machines, it is either
necessary to communicate updates to other machines after
each iteration, or a sufficiently large subdomain needs to be
stored on all machines.
Are long-range interactions expected to be important for the

system of interest? If strong long-range contributions to the
energy are present, it is advisable to either use a model without
cutoffs, or augment the pure ML approach by explicitly
including physical interaction terms.
As described earlier, many ML-FFs introduce cutoffs to

exploit chemical locality. An obvious downside of this
approach is that all interactions beyond the cutoff cannot be
represented. For uncharged molecules without strong dipole
moments, relevant interactions are usually sufficiently short-
ranged that this is not problematic. However, when strong
long-ranged (e.g., charge-dipole) interactions are important,
cutoffs may introduce significant errors. Models such as
(s)GDML, which consider the whole chemical structure
without introducing cutoffs, do not suffer from this issue in
principle.
While it is possible to simply increase the cutoff distance

until more long-ranged contributions can be neglected, this

Figure 13. Overview of the most important steps when constructing and using ML-FFs.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c01111
Chem. Rev. 2021, 121, 10142−10186

10159

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01111?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01111?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01111?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01111?fig=fig13&ref=pdf
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c01111?ref=pdf


decreases the computational and data efficiency of models
which were designed with cutoffs in mind. A better alternative
could be to include the relevant physical interaction terms
explicitly in the model. For example, TensorMol195 and
PhysNet108 include such correction terms by default, but other
models can be augmented in a similar fashion. Although not
strictly necessary, even models without cutoffs may profit from
such terms by an increased data efficiency.

3.3. Data Collection

A fundamental component of any ML model is the reference
data. While its architecture and other technical details are
responsible for the potential accuracy of a model, the choice of
reference data and its quality defines the reliability and range of
applicability of the final model. Any deficiencies that are
present in the data will inevitably also lead to artifacts in
models trained on it, a principle often colloquially stated as
“garbage in, garbage out”.217 As such, the reference data is one
of the most important components of an ML-FF. The
generation of data sets in computational chemistry and physics
are challenges on their own. First of all, each reference point is
a result of computationally expensive and often nontrivial
calculations (see Section 2.1), which limits the amount of data
that can be collected. Furthermore, the dimensionality of the
configurational space of molecules, solids, or liquids is so vast
that−except for trivial cases−it is not apparent how to identify
the representative geometries in the ocean of possibilities. The
optimal choice of reference data might even need to be
adapted to the individual properties of the respective ML
model that consumes it or its intended application. In the
following, several strategies for sampling the PES and
generating reference data sets are outlined (multiple of these
approaches can be combined). Afterward, problems that may
occur due to insufficient sampling are highlighted and general
remarks about the importance of a consistent reference data set
are given.
3.3.1. AIMD Sampling. A good starting point to assemble

the reference data set is by sampling the PES using ab initio
molecular dynamics (AIMD) simulations. Albeit expensive in
terms of the amount of necessary reference calculations, this
technique constitutes a straightforward way to explore
configurational space. Here, the temperature of the simulation
determines which regions of the PES and what energy ranges
(according to the Boltzmann distribution) are explored (see
Figure 14). For example, if the aim is to construct an ML-FF

for calculating the vibrational spectrum of ethanol at 300 K,
generating the database at 500 K is a safe option since the
subspace of configurations relevant at 300 K is contained in the
resulting database (see Figure 14A). Sampling at higher
temperatures ensures that the model does not enter the
extrapolation regime during production runs, which is
practically guaranteed to happen when a lower temperature
is used for sampling. In general, the resulting data set will be
biased toward lower energy regions of the PES, where the
system spends most of the simulation time. For this reason,
pure AIMD sampling is only advisable when the intended
application of the final ML model involves MD simulations for
equilibrium or close to equilibrium properties, where rare
events do not play a major role. Examples of this are the study
of vibrational spectra, minima population, or thermodynamic
properties.

3.3.2. Sampling by Proxy. Constructing reliable reference
data sets from AIMD simulations can be computationally
expensive. While system size plays a major role, other
phenomena, such as the presence of intramolecular inter-
actions and fluxional groups, can also influence how quickly
the PES is explored. Because of this, long simulation times may
be required to visit all relevant regions. For example,
generating 2 × 105 conformations from AIMD using a
relatively affordable level of theory (e.g., PBE+TS/DFT with
a small basis set) can take between a few days to several weeks
(depending on the size of the molecule). With higher levels of
theory, the required computation time may increase to
months, or, when highly accurate methods such as CCSD(T)
are required, even become prohibitively long (several years).
To resolve this issue, a possible strategy is to sample the PES

at a lower level of theory to generate a long trajectory that
covers many regions on the PES. The collected data set is then
subsampled to generate a small, but representative set of
geometries, which serve as input for performing single-point
calculations at a higher level of theory (see Figure 15). This
strategy works best when the PES has a similar topology at
both levels of theory, so it can be expected that configurations
generated at the lower level are representative of configurations
that would be visited in an AIMD simulation at the higher level
(see the two-dimensional projections of the PES in Figure 15).
When the two PESs are topologically very different, for
example, when a semiempirical method or even a conventional
FF is used to generate the initial trajectory, it may happen that
the relevant regions of the PES at the higher level of theory are

Figure 14. (A) Two-dimensional projection of the sampled regions of the PES of ethanol at 100 K, 300 K, and 500 K from running AIMD
simulations with FHI-aims218 (Fritz Haber Institute ab initio molecular simulations) at the PBE+TS/DFT level of theory.167,168 The length of the
simulation was 500 ps. (B) Distribution of sampled potential energies for the three different temperatures.
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not covered sufficiently. Then, when an ML-FF is trained on
the collected data set and used for running an MD simulation,
the trajectory may enter the extrapolation regime and the
model might give unphysical predictions. Thus, extra care
should be taken when two very different levels of theory are
used for sampling by proxy.
3.3.3. Adaptive Sampling. Another method to minimize

the amount of expensive ab initio calculations is called adaptive
sampling or on-the-fly ML.219 Here, a preliminary ML-FF is
trained on only a small initial set of reference data and then
used to run an MD simulation. During the dynamics,
additional conformations are collected whenever the model
predictions become unreliable according to an uncertainty
criterion. Then, new reference calculations are performed for
the collected structures and the training of the ML model is
continued or started from scratch on the augmented data set.
The process is repeated until no further unreliable regions can
be discovered during MD simulations.
When following this strategy, the quality of the uncertainty

estimate is crucial for an efficient sampling of the PES: If the
estimate is overconfident, deviations from the reference PES
might be missed. If the estimate is overly cautious, many
redundant ab initio calculations have to be performed. There
exist several ways to estimate the uncertainty of an ML-FF. For
example, Bayesian methods learn a probability distribution
over models, which enables straightforward uncertainty
estimates (see the predictive variance of a Gaussian process,
eq 9). For models where an explicit uncertainty estimate is not
available, for example, neural networks, a viable alternative is
query-by-committee.205,220 Here, an ensemble of models is
trained, for example on different subsets of the reference data
and each starting from a different parameter initialization.
Then, the discrepancy between their predictions can be used as
uncertainty estimate. Query-by-committee has been success-
fully employed to sample PESs using neural networks for water
dimers,221 organic molecules71,108 as well as across chemical
compound space.222 Other alternatives, for example using
dropout223 as a Bayesian approximation,224 could also be used.

Collecting data “on-the-fly” is even possible without
uncertainty estimates. Instead, additional reference calculations
are performed at fixed intervals during the MD simula-
tion.219,225 This relies on the assumption that the probability of
reaching the extrapolation regime of an ML model rises with
increasing length of the MD trajectory. While performing ab
initio calculations in regular intervals will discover all deviations
of the model eventually, this variant of on-the-fly ML does not
exploit any information about the already collected reference
set and may thus lead to many redundant data points. More
detailed reviews on uncertainty estimation and active sampling
of PESs can be found in refs 226 and 227.

3.3.4. Metadynamics Sampling. Similar to adaptive
sampling, metadynamics sampling228,229 uses a preliminary
ML-FF to run MD simulations to find structures for which to
run reference calculations. However, the dynamics are biased
to increase the probability for visiting unexplored regions on
the PES. This is achieved by placing “Gaussian bump
functions” on the PES in regions that have already been
visited, raising the potential energy of already known structures
artificially. It is possible to combine metadynamics with the
uncertainty estimates used in adaptive sampling to only select
the most relevant structures.

3.3.5. Normal Mode Sampling. It is also possible to
sample the PES without running any kind of MD simulation.
In normal mode sampling,194 the idea is to start from a
minimum on the PES and generate distorted structures by
randomly displacing atoms along the normal modes. They are
the eigenvectors of the mass-weighted Hessian matrix obtained
at the minimum position, that is, a harmonic approximation of
the molecular vibrations. From the associated force constants
(related to the eigenvalues), the increase in potential energy
for displacements along individual normal modes can be
estimated. Since they are orthogonal to each other, it is
straightforward to combine multiple random displacements
along different normal modes such that the resulting structures
are sampled from a Boltzmann distribution at a certain
temperature. In other words, structures generated like this are
drawn from the same distribution as if an “approximated PES”
was sampled with a (sufficiently long) MD simulation. This
approximated PES is equivalent to a Taylor expansion of the
original PES around the minimum position, truncated after the
quadratic term (the contribution of the linear term vanishes at
extrema).
Structures generated from random normal mode sampling

are not correlated, in contrast to those obtained from adjacent
time steps in MD simulations, which makes this approach an
efficient way to explore the PES. However, the disadvantage is
that only regions close to minima can be sampled. Addition-
ally, the harmonic approximation is only valid for small
distortions, meaning the larger the temperature, the more the
sampled distribution diverges from the Boltzmann distribution
on the true PES. Because of these limitations, it is best to
combine normal mode sampling with other sampling methods,
for example to generate an initial reference data set, which is
later expanded by adaptive sampling.

3.3.6. Problems Due to Insufficient Sampling. Because
their extrapolation capabilities are limited, ML methods only
give reliable predictions in regions where training data is
present.230 When generating reference data, it is therefore
important that all regions of the PES that may be relevant for a
later study are sampled sufficiently. For example, when
studying a reaction, the data should not only cover

Figure 15. Procedure followed to generate a database at the
CCSD(T) level of theory for keto-malondialdehyde using sampling
by proxy. An AIMD simulation at 500 K computed at the PBE+TS/
DFT level of theory is used to sample the molecular PES. Afterward,
the trajectory is subsampled (black dots) to generate a subset of
representative geometries, for which single-point calculations at the
CCSD(T) level of theory are performed (red dots). This highly
accurate reference data is then used to train an ML-FF.
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configurations corresponding to educt and product structures,
but also the region around the transition state and along the
transition pathway. When the reaction coordinate defining the
transition process is already known, a straightforward way to
generate the reference data would be to sample the transition
path region. However, even when an ML model can reproduce
the entire reference data set with the required accuracy, it is
still possible to run into issues when the model is used to study
the reaction. If the rare transition process was not sampled
sufficiently, it is not guaranteed that MD simulations with the
ML-FF reproduce it correctly. The reference data may be
restricted to a specific subset of molecular configurations along
the transition pathway. Hence, the model can enter the
extrapolation regime somewhere between the boundary states
and the transition pathways generated by an MD simulation
might be unreasonable. Another potential issue is that after
passing the transition state region, typically, a large amount of
potential energy is converted to internal motions such as bond
vibrations. As a result, the effective temperature defined by the
kinetic energy exceeds the ambient conditions by orders of
magnitude. Even when using a thermostat in the simulation,
thermal energy increases so rapidly that it may not be able to
handle the increase in temperature immediately. As a
consequence, the trajectory visits high-energy configurations,
which may not be included in the reference data, and the
model again has to extrapolate.
When ML-FFs enter the extrapolation regime, i.e., they are

used to predict values outside the sampled regions of the PES,
unphysical effects may be observed. Consider for example the
dissociation of the O−H bond in the hydroxyl group of
ethanol (Figure 16). Here, different models were trained on
data gathered from an MD simulation of ethanol at 500 K and
used to predict how the energy changes when the O−H
distance of the hydroxyl group is shortened or elongated to
extreme values well outside the range sampled during the
dynamics. In this example, while the sGDML model is able to

accurately extrapolate to much shorter distances than are
present in the training data, it still fails to predict the bond
dissociation. The NNP models (PhysNet and SchNet) exhibit
qualitatively wrong short-range behavior and spurious minima
on the PES, which may trap trajectories during MD
simulations. Because of these limited extrapolation capabilities,
it is advisable to sample larger regions of the PES than are
expected to be visited during MD simulations so that there is a
“buffer” and models never enter the unreliable extrapolation
regime during production runs. For example, when an ML-FF
is to be used for a study at a temperature of 300 K, the PES
should be sampled around 500 K or higher.

3.3.7. Importance of Data Consistency. Although it
may appear trivial, it is crucial that all data used for training a
model is internally consistent: A single level of theory (method
and basis set) should be used to calculate the reference data.
When multiple quantum chemical codes (or even different
versions of the same code) are used for data generation, it
should be checked that their outputs are numerically identical
when given the same input geometry (if they are not then this
will effectively manifest itself like noisy outputs, severely
deteriorating the precision of the ML model). Further, many
ab initio codes automatically reorient the input geometry such
that the principal moments of inertia are aligned with the x-, y-,
and z-axes, so extra care should be taken when forces or other
orientation-dependent quantities (i.e., electric moments) are
extracted to verify they are consistent with the input geometry.
When some calculation settings need to be adapted for a
subset of the data, for example, for cases with difficult
convergence, it is important to check that values computed
with the modified settings are consistent with the rest of the
data. Additionally, for training some ML models, it may be
essential that atoms are ordered in a particular way throughout
the data set. For example, the permutational symmetry of
(s)GDML models is limited to the transformations recovered
from the training set, whereas the NN models discussed in this
review are fully agnostic with respect to atom indexing.

3.4. Data Preparation

After the reference data are collected, they must be prepared
for the training procedure. This includes splitting the data into
different subsets, which are reserved for separate purposes.
Some models may also require that the data is preprocessed in
some way before the training can start. In the following,
important aspects of these preparation steps are highlighted.

3.4.1. Splitting the Data. Prior to training any ML model,
it is necessary to split the reference data into disjoint subsets
for training/validation and testing (see Section 2.2.3). While
the training/validation set is used for fitting the model, the test
set is only ever used after a model is trained to estimate its
generalization error, i.e., to judge how well the model performs
on unseen data.30,159 It is very important to keep the two splits
separate, as it is easily possible to achieve training errors that
are several orders of magnitude lower than the true
generalization error when the model is not properly
regularized. Many models also feature hyperparameters, such
as kernel widths, regularization terms or learning rates, that
must be tuned by comparing several trained model variants on
a third data set used purely for validation (a subset of the
training/validation set). Note that information from the
validation set will still enter the model indirectly, that is, it
also participates in the training process. This is why a strict
separation of the training/validation set from the test set is

Figure 16. One-dimensional cut through the PES of ethanol along the
O−H bond distance for different ML-FFs (solid blue, yellow, and
orange lines) compared to ab initio reference data (dashed black line).
Close to the region sampled by the training data (range highlighted in
gray), all model predictions are virtually identical to the reference
method (see zoomed view). When extrapolating far from the sampled
region, the different models have increasingly large prediction errors
and behave unphysically.
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crucial. Undetected duplicates in the data set can complicate
splitting, as the contamination of the test set with training data
(“data leakage”) might go unnoticed. In this case, the model is
effectively trained on part of the test set and estimates of the
generalization error might be too optimiztic and unreliable.
Such a scenario can occur even when no obvious mistakes were
made, for example, when the structures for a data set are
sampled by running a long MD simulation where snapshots are
written very frequently. Structures collected from adjacent time
steps may be highly correlated in this case and when splitting
the data randomly into training and test sets, a large portion of
both sets will be almost identical. In such a case, instead of
using a random split, a better approach would be to use a time-
split of the data set,231 for example, using the first 80% of the
MD trajectory as the training/validation set and reserving the
last 20% for testing.
3.4.2. Data Preprocessing. Prior to training a model, the

raw data is often processed in some way to improve the
numerical stability of the ML algorithm. For example, a
common practice is normalization, where inputs (or prediction
targets) are scaled and shifted to lie in the range −1...1 or to
have a mean of zero and unit variance. The constants required
for such transformations must never be extracted from the
complete data set. Instead, only the training set may be used to
obtain this information.30,90,231 Otherwise, estimates of the
generalization error on the test set may be overconfident (this
is another form of data leakage). While normalization may be
less common for the purpose of constructing ML-FFs, any
“data-dependent“ transformation must be done carefully. For
example, it may be desirable to subtract the mean energy of
structures from the energy labels to obtain numbers with
smaller absolute values (for numerical reasons). This mean
energy should be calculated only from the structures in the
training set.
If a model is trained using a hybrid loss that incorporates

multiple interdependent properties, such as energy and forces,
it is important to consider the effects of the normalization
procedure on the functional relationship of those values. For
example, multiplying the energy labels by a factor requires that
the forces are treated in the same way, because the factor
carries over to the derivative (scaling energies and forces by
different factors would therefore introduce inconsistencies in
the data). Also, while subtracting the mean value from energy
labels is valid, it is not correct to add any constant to the force
labels, because that would translate into a linear term in the
energy domain (the energy is related to the forces through
integration). Consequently, the consistency between both label
types would be broken and an energy conserving model would
be incapable of learning. Even when doing simple unit
transformations, care should be taken not to introduce any
inconsistencies. For example, when energy labels are converted
from Eh to kcal mol−1 and atom coordinates from a0 to Å, force
labels have to also be converted to kcal mol−1 Å−1 so that all
data is consistent. Depending on which code was used to
obtain the reference data, it is even possible that units for some
labels must be converted, because they may be given in
different unit systems in the raw data (ab initio codes often
report energy and forces in atomic units, whereas for
coordinates, angstroms are popular).

3.5. Training the Model

After the data have been collected and prepared, the next step
is training the ML-FF. During the training process, the

parameters of the model are tuned to minimize a loss function,
which measures the discrepancy between the training data and
the model predictions. In some cases, e.g., most kernel
methods, the optimal solution can be found analytically. When
this is not possible, for example, when training neural
networks, the parameters are typically optimized iteratively
by gradient descent or a similar algorithm. Because standard
gradient descent tends to converge very slowly,
some authors have proposed to augment it with terms
mimicking momentum232,233 or adaptive step sizes.234,235

Not only training times, but also the achievable accuracy
varies greatly with different optimization algorithms, so it is
best to try different schemes (see ref 236 for an overview over
different popular methods). A good default choice is the Adam
optimizer,237 which converges quickly and gives good results
for many different NN architectures. The hyperparameters of a
model (e.g., the number of layers or their width in the case of
NNs) can also be selected in this step, albeit by checking the
model performance on the validation set after training (instead
of optimizing them directly). This section details the training
process and highlights important points to consider, for
example, the choice of loss function or how to prevent
overfitting of the model to the training data.

3.5.1. Choosing the Loss Function. For regression tasks,
a standard choice for the loss function is the mean squared
error (MSE) given by = ∑ − ̂= y y( )

N i
N

i i
1

1
2, because it

punishes outliers disproportionately. Here, the index i runs
over all M samples of the training data, yi is the reference value
for data point i and ŷi is the corresponding model prediction.
When the MSE is used as loss function, it is implicitly assumed
that any noise present in the reference data is distributed
normally, which without additional information, is a sensible
guess for most data. Further, the MSE loss allows finding the
optimal parameters analytically (due to convexity) for linear
ML algorithms, such as kernel ridge regression (see eq 10 in
Section 2.2.1). However, the MSE is not necessarily the best
choice for all cases. For example, to make the model less
sensitive to outliers, a common alternative is to use a mean

absolute error (MAE) loss given by = ∑ − ̂= y y
N i

N
i i

1
1 .

Other functional forms, such as Huber loss238 or even an
adaptive loss,239 are also possible, provided they are a
meaningful measure of model performance.
After deciding on the general form of the loss function, the

question remains which labels y to use as a reference. While the
potential energy is an obvious choice, in classical MD, the PES
is explored via integration of Newton’s second law of motion,
which exclusively involves atomic forces. Since an important
objective of ML-FFs is to reproduce the dynamical behavior of
molecules in MD simulations as well as possible, it could even
be argued that accurate force predictions should take priority
over energy predictions in MD applications. However, since
energy labels are usually available as a byproduct of force
calculations, it seems reasonable to include both label types in
the hope that this will help improve the overall prediction
performance for both quantities. This gives rise to models
based on hybrid loss functions that simultaneously penalize
force F and energy E training errors. Assuming an MSE loss, it
generally takes the form

∑ η= ̂ − + ̂ −
=
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where the hyperparameter η determines the relative weighting
between both loss terms to account for differences in units,
information content, and noise level of the label types. A
bilateral reduction of both loss terms is only possible if the
objectives are noncompeting, that is, when the optimal
parameter set is equally effective across both tasks. For this
to be true, it must hold that

η

η

̂ − = ̂ −

⇒ − ∇ ̂ − = ̂ −

E E

E E E E

F F ( ) ,

( ) ( )

i i i i

i i i iR

2 2

2 2
(28)

at every training point i (here, the relation F = −∇RE was
substituted). Otherwise, the objectives Fi

and Ei
are

necessarily minimized by a different set of model parameters.
Eq 28 is only true in general when = = 0E Fi i

for all i,
which is not fulfilled in practice because both labels may
contain noise and they can usually not be fitted perfectly. A
model trained using a hybrid loss (eq 27) will thus have to
compromise between fulfilling both objectives on the training
data, as opposed to joining energy and force labels for a
performance gain on both. For this reason, the use of hybrid
loss functions (or how to weight different contributions)
warrants careful consideration depending on the intended
application of the final model. Some models, for example,
(s)GDML (see Section 2.3.2), do not even include energy
constraints in their loss function at all and are trained on forces
only. The energy can still be recovered via integration, but it
does not participate in the training procedure except for
determining the integration constant. In the end, the ultimate
measure of a model’s quality should not be how well it
minimizes a particular loss function, but instead how well it is
able to reproduce the experimental observables of interest.
Also, it is important to keep in mind that the loss function
measured on the training data is only a proxy for the true
objective of any model, which is to generalize to unseen data.
Compromising between the energy and force labels of the
training data can even improve prediction accuracy for both
label types on unseen data. For a more thorough discussion on
the role of gradient reference data and how it can improve
prediction performance, see ref 240−242.
3.5.2. Tuning Hyperparameters. Hyperparameters, such

as kernel widths or the depth and width of a neural network,
are typically optimized independently of the parameters that
determine the model fit to the data: A hyperparameter
configuration is chosen, the model is trained, and its
performance is measured on the validation set. This process
is repeated for as many trials as are affordable or until the
desired accuracy is reached. Here it is crucial that no test data
is used to measure model performance when tuning hyper-
parameters, so the ability to estimate the generalization error
on the test set is not compromised. Choosing good values for
the hyperparameter regimes requires some experience and
intuition of the problem at hand. Fortunately, many models are
quite robust and good default hyperparameters exist, which do
not require any further tuning to arrive at good results. In other
cases, hyperparameter tuning can be automated (for example
via grid or random search30,90,150,165,243) and does not need to
be performed manually. See also Section 2.2.3 for a more
detailed discussion on tuning hyperparameters.
3.5.3. Regularization. Because ML models contain many

parameters (sometimes even more than the number of data
points used for training), it is possible or even likely that they

“overfit” to the training data. An overfitted model achieves low
prediction errors on the training set, but performs significantly
worse on unseen data (Figure 17A). The aim of regularization
methods is to prevent this unwanted effect by limiting or
decreasing the complexity of a model.

When the loss function is minimized iteratively by gradient
descent or similar algorithms, as is common practice for
training NNs, one of the most simple methods to prevent
overfitting is early stopping244). In the beginning of the
training process, prediction errors typically decrease on both
training and validation data. At some point, however, because
the validation set is not used to directly optimize parameters,
the performance on the training data will continue to improve,
whereas the loss measured on the validation set will stagnate at
a constant value or even begin to increase again. This indicates
that the model starts overfitting. Early stopping simply halts
the training process as soon as the validation error converges
(instead of waiting for convergence of the training error), see
Figure 17B. Early stopping also limits the size of the neural
network weights and thus implicitly limits the complexity of
the underlying function class. Similar to tuning hyper-
parameters, only the validation set, but never the test set,
must be used for determining the stopping point.
Another method of regularization is the introduction of

penalty terms to the loss function. Since overfitted models
often are characterized by high variance in the prediction (see
Figure 17A), the idea is to penalize large model parameters.
For example, L2 regularization (adding the squared magnitude
of parameters to the loss) shrinks the L2-norm of the
parameter vectors toward zero and prevents very large
parameter values. On the other hand, L1 regularization (adding
the absolute values of parameters to the loss) shrinks their L1-
norm, that is, it favors sparse parameter combinations.

Figure 17. (A) One-dimensional cut through a PES predicted by
different ML models. The overfitted model (red line) reproduces the
training data (black dots) faithfully, but oscillates wildly in between
reference points, leading to “holes” (spurious minima) on the PES.
During an MD simulation, trajectories may become trapped in these
regions and produce unphysical structures (inset). The properly
regularized model (green line) may not reproduce all training points
exactly, but fits the true PES (gray line) well, even in regions where no
training data is present. However, too much regularization may lead to
underfitting (blue line), that is, the model becomes unable to
reproduce the training data at all. (B) Typical progress of the loss
measured on the training set (blue) and on the validation set (orange)
during the training of a neural network. While the training loss
decreases throughout the training process, the validation loss saturates
and eventually increases again, which indicates that the model starts
to overfit. To prevent overfitting, the training can be stopped early
once the minimum of the validation loss is reached (dotted vertical
line).
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Typically, the regularization term is weighted by an additional
hyperparameter λ that determines its strength (like all
hyperparameters, λ has to be tuned on the validation set).
Note that solving eq 10 to determine the parameters of a
kernel method will result in an L2-regularized model trained on
the MSE loss function.

3.6. Using ML-FFs in Production

The main motivation for training an ML-FF is to use it for
some production task such as running an MD simulation.
Before doing so, however, it is advisable to verify that it fulfills
the accuracy requirements for its intended application. At this
point in time, the test set becomes important: Since it was
neither used directly nor indirectly during the training process,
the data in the test set allows to estimate the performance of a
model on truly unseen data, that is, how well it generalizes. For
this, it is common practice to compute summary errors on the
test set, for example, the mean absolute error (MAE) or root
mean squared error (RMSE), as a measure of the overall
accuracy of a model. In general, such a way of quantifying
accuracy gives an overview of the ML model’s performance on
the given data set and provides a simple way to benchmark.
However, summary errors are biased toward the densely

sampled regions of the PES, whereas much larger errors can be
expected for less populated regions. Therefore, while summary
errors measured on the test set are typically a good indicator
for the quality of a model, they are not necessarily the best way
to judge how well an ML-FF performs at its primal objective,
namely capturing the relevant quantum interactions present in
the original molecular system. In other words, performance
measures evaluated on the test set should not be trusted
blindly. They are only reliable when the test set is
representative of the new data encountered during production
tasks, that is, when they are drawn from the same distribution.
When a model has to extrapolate, it might give unreliable
predictions, even when its performance on the test set is
satisfactory. When in doubt, especially when an ML-FF is used
for a different task than it was originally constructed for, it is
better to collect a few new reference data points to verify that a
model is still valid for its use case. Because of the generally
limited extrapolation capabilities of ML models, results
obtained from studies with ML-FFs should always be
scrutinized more carefully than results obtained with conven-
tional FFs. For example, it is advisable to randomly select a few
trajectories and verify that the sampled structures look
“physically sensible”, for example, no extremely short or long
bonds are present and atoms have no unusual valencies. Since
the PES is a high-dimensional object, rare events, where a
trajectory visits a part of configurational space that is not
sampled in the reference data, are always possible, even when
the PES was carefully sampled. If any questionable model
predictions are found, it is advisable to double-check their
accuracy with additional reference calculations.

3.7. Example Code and Software Packages

While many modern ML-FFs are conceptually simple, their
implementation is often not straightforward, involving many
intricate details that can not be exhaustively covered in
publications. Instead, those details are best conveyed by a
reference implementation of the respective model. Publicly
available well maintained codes allow to replicate numerical
experiments and to build on top of existing models with
minimal effort.

In this section, example code snippets for training and

evaluating kernel- and NN-based ML-FFs with the sGDML165

(Section 3.7.1) and SchNetPack245 (Section 3.7.2) software

packages are given. This is followed by a short description of

other popular software packages for the construction of ML-

FFs (Section 3.7.3) as a first orientation for interested readers.

Note that the list is not comprehensive and many other similar

packages exist.
3.7.1. The sGDML Package. A reference implementation

of the (s)GDML model is available as Python software package

at http://www.sgdml.org.165 It includes a command-line

interface that guides the user through the complete process

of model creation and testing, in an effort to make this ML

approach accessible to broad practitioners. Interfaces to the

Atomic Simulation Environment (ASE)246 or i-PI247 make it

straightforward to perform MD simulations, vibrational

analyses, structure optimizations, nudged elastic band

computations, and more.
To get started, only user-provided reference data is needed,

specifically a set of Cartesian geometries with corresponding

total energy and atomic-force labels. Force labels are necessary,

because sGDML implements energy conservation as an explicit

linear operator constraint by modeling the FF reconstruction

as the transformation of an underlying energy model (see

Section 2.3.2). The trained model will give predictions at the

accuracy of the reference data and can be queried like any

other FF.
3.7.1.1. Data Set Preparation. The sGDML package uses a

proprietary format for its data sets, but scripts to import and

export to all file types supported by the ASE package,246 which

covers most popular standards, are included. To

c o n v e r t a < d a t a s e t > , s i m p l y c a l l

sgdml_dataset_via_ase.py <dataset> and fol-

low the instructions.
3.7.1.2. Training. The most convenient way to reconstruct a

FF is via the command line interface: sgdml all

<dataset> <ntrain> <nvalid>. This command will

automatically generate a fully trained and cross-validated

model and save it to a file, that is, model selection and

hyperparameter tuning (see Section 2.2.3) are performed

automatically. The parameters <ntrain> and <nvalid>

specify the sample sizes for the training and validation subsets,

respectively. All remaining points are reserved for testing. Each

subset is sampled from the provided reference <dataset>

without overlap.
3.7.1.3. Using the Model. To use the trained model, the

sGDML predictor is instantiated from the <model> file

generated above and energy and forces are queried for a given

geometry (for example stored in an XYZ file <xyz>):
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It is also possible to run MD simulations using ASE and the
Calculator interface included with the sGDML package:

To run this script, a trained model (<model>) and an
initial geometry (<xyz>) are needed. The resulting MD
trajectory is stored in a file <trajectory>. For more
details and applications examples, please visit the documenta-
tion at www.sgdml.org/doc/.
3.7.2. The SchNetPack Package. SchNetPack245 is a

toolbox for developing and applying deep neural networks to
the atomistic modeling of molecules and materials available
from https://schnetpack.readthedocs.io/. It offers access to
models based on (weighted) atom-centered symmetry
functions and the deep tensor neural network SchNet, which
can be coupled to a wide range of output modules to predict
potential energy surfaces and forces, as well as a growing
number of other quantum-chemical properties. SchNetPack is
designed to be readily extensible to other neural network
potentials such as the DTNN160 or PhysNet.108 It provides
extensive functionality for training and deploying these models,
including access to common benchmark data sets. It also
provides an Atomic Simulation Environment (ASE)246

calculator interface, which can be used for performing a wide
variety of tasks implemented in ASE. Moreover, SchNetPack
includes a fully functional MD suite, which can be used to
perform efficient MD and PIMD simulations in different
ensembles.
As it is based on the PyTorch deep learning framework,248

SchNetPack models are highly efficient and can be applied to
large data sets and across multiple GPUs. Combined with the
modular design paradigm of the code package, these features
also allow for a straightforward implementation and evaluation
of new models. Similar to the sGDML package, the central
commodity for training models in SchNetPack is a data set
containing the Cartesian geometries (including unit cells and
periodic boundary conditions, if applicable) and atom types, as
well as the target properties to be modeled (e.g., energies,
forces, dipole moments, etc.). More information can be found
in ref 245.

3.7.2.1. Data Set Preparation. SchNetPack uses an adapted
version of the ASE database format to handle reference data.
The package provides several routines for preparing custom
data sets, as well as a range of preconstructed data set classes
for popular benchmarks (e.g., QM9249 and MD17105), which
will automatically download and format the data. For example,
molecular data from the MD17 data set can be loaded via
spk_load.py md17 <molecule> <path> where
<molecule> indicates the molecule for which data should
be loaded (e.g., ethanol), while the second argument specifies
where the data is stored locally.
SchNetPack also provides a utility script for converting data

files in the extended XYZ format, which is able to handle a
wide variety of properties, to the database format used
internally. Conversion can be invoked with the command
spk_parse.py <input> <target> where the argu-
ments specify the file paths to the <input> data file and
<target> database in SchNetPack format, respectively.

3.7.2.2. Training. As for the sGDML package, training and
evaluating ML models in SchNetPack can be performed via a
command line interface. For example, a basic model can be
tra ined with the scr ipt: spk_run.py train
[model_type] [dataset_type] <dataset>
<model> --split <ntrain> <nvalid>. Here,
[model_type] specifies which kind of NNP to use
(wacsf for a descriptor-based NNP using wACSFs,206 or
schnet for the SchNet109 end-to-end NNP architecture) and
[dataset_type] specifies either a preexisting data set
(e.g., qm9 or md17), or a custom data set provided by the
user. The next two arguments are the paths to the reference
<dataset> and the file the trained <model> will be
written to. The arguments <ntrain> and <nvalid>
specify the sample sizes for the training and validation subsets,
while the remaining points are reserved for testing.
SchNetPack offers a wide range of additional settings to
modify the training process (e.g., model composition, use of
GPU, how different properties should be treated etc.), see
https://schnetpack.readthedocs.io/.
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3.7.2.3. Using the Model. Once a model has been trained, it
can be evaluated in several different ways. The most basic
method is to perform predictions via:

It is also possible to use the SchNetPack MD suite to
perform various simulations with the trained model. Continu-
ing the above example, a basic MD run can be carried out as

Simulations can be further modified via hooks, which
introduce temperature and pressure control, as well as various
sampling schemes. Further documentation of the code package
and usage tutorials can be found at https://schnetpack.
readthedocs.io/.

3.7.3. Other Software Packages. 3.7.3.1. AMP: Atom-
istic Machine-Learning Package. AMP is a Python package
designed to integrate closely with the Atomistic Simulation
Environment246 (ASE) and aims to be as intuitive as possible.
Its modular architecture allows many different combinations of
structural descriptors and model types. The main idea of AMP
is to construct ML-FFs on-demand, that is, simulations are first
started with an ab initio method and later switched to the ML-
FF once the model is sufficiently accurate. The package is
described in greater detail in ref 191 and on its official website
https://amp.readthedocs.io/.

3.7.3.2. ænet. The Atomic Energy NETwork (ænet)
package includes tools for constructing and applying neural
network-based ML-FFs. It is written in Fortran 95/2003 and
utilizes efficient BLAS (Basic Linear Algebra Subprograms)
and LAPACK (Linear Algebra PACKage) routines for
performing linear algebra. A Python interface is also
included. More details can be found on https://github.com/
atomisticnet/aenet/.

3.7.3.3. DeePMD-Kit. The DeePMD-kit is a package written
in Python/C++ aiming to minimize the effort required to build
deep NNPs with different structural descriptors. It is based on
the TensorFlow deep learning framework250 and offers
interfaces to the high-performance classical and path-integral
MD packages LAMMPS251 and i-PI.247 More details on the
DeePMD-kit can be found in ref 252 or on https://github.
com/deepmodeling/deepmd-kit/.

3.7.3.4. Dscribe. Dscribe is a Python package for trans-
forming atomic structures into fixed-size numerical finger-
prints.253 These descriptors can then be used as input for
neural networks or kernel machines to construct ML-FFs.
Supported representations include the standard Coulomb
matrix28 and variants for the description of periodic systems,119

ACSFs,116 SOAP,117 and MBTR.170 More details can be found
on the official Web site https://singroup.github.io/dscribe/ or
in ref 253.

3.7.3.5. n2p2. The neural network potential package (n2p2)
allows researchers to use existing parametrizations of Behler-
Parinello NNPs to predict energies and forces (either with
standalone tools or with the LAMMPS MD package251), but it
also provides training tools for generating new potentials. It is
mainly written in C++. For further details, refer to https://
compphysvienna.github.io/n2p2/.

3.7.3.6. PROPhet. The PROPerty Prophet (or short:
PROPhet) package uses neural networks to predict the
relationship between chemical structure and material proper-
ties. As such, it can also be used to generate NN-based ML-
FFs. It includes tools to automatically extract properties of
interest from the output files of several ab initio codes and an
interface to the LAMMPS MD package.251 More details can be
found on https://biklooost.github.io/PROPhet/.

3.7.3.7. QML. QML is a toolkit for learning properties of
molecules and solids written in Python.254 It supplies building
blocks to construct efficient and accurate kernel-based ML
models, such as different kernel functions and premade
implementations of many different structural representations,
for example, Coulomb matrix,28 SLATM,131 and FCHL.107

The package is primarily intended for the general prediction of
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chemical properties but can also be used for the construction
of ML-FFs. For further details, refer to the official Web site
https://www.qmlcode.org or the github repository https://
github.com/qmlcode/qml/.
3.7.3.8. RKHS Toolkit. The RKHS toolkit is mainly intended

for constructing highly accurate and efficient PESs for studying
scattering reactions of small molecules. As described in section
2.2.1, the evaluation of kernel-based methods scales linearly
with the number of training points M (see eq 2). By using
special kernel functions and precomputed lookup tables, the
RKHS toolkit allows researchers to bring this cost down to

N(log ). However, it requires that the training data has grid
structure, which limits its applicability to small systems, where
it is meaningful to sample the PES by scanning a list of values
for each internal coordinate. The implemented kernel
functions also allow to encode physical knowledge about the
long-range decay behavior of certain coordinates, which
enables accurate extrapolation well beyond the range covered
in the training data. A Fortran90 implementation of the toolkit
can be downloaded from https://github.com/MMunibas/
RKHS/ and the algorithmic details are described in ref 255.
3.7.3.9. RuNNer. The RuNNer Code was the first

implementation of high-dimensional neural network potentials
and the source code is freely available. Details on how to
obtain access can be found on https://www.uni-goettingen.de/
de/560580.html.

3.7.3.10. TensorMol. The TensorMol package allows
researchers to train NNPs that explictly account for electro-
static interactions. It is based on the TensorFlow deep learning
framework250 and includes an interface to i-PI247 for
performing path integral simulations. For further information,
refer to ref 195 or https://github.com/jparkhill/TensorMol.

4. PHYSICAL AND CHEMICAL INSIGHTS FROM
MACHINE LEARNED FORCE FIELDS

In nature, the atoms in chemical systems are in constant
motion, giving rise to various configurations and reactive
events. A large number of experimental observations are not
based on a single molecule or atom, but instead on ensembles
of various species subject to external conditions, such as
temperature or pressure. Consequently, properties associated
with individual structures are not sufficient to characterize
macroscopic systems. One way to compute ensemble averages
are molecular dynamics (MD) simulations, where the time
evolution of a system is governed by the atomic forces derived
from its associated potential energy surface (PES). From the
ergodic hypothesis256 it is known that the expected value of an
observable A can also be obtained from the time average

⟨ ⟩ = ∑−
=A T At t

T
t

1
1 , where At is the value of A corresponding

to the structure at time step t of the dynamics trajectory and T
is their total number. Of course, this relation is valid only when

Table 1. Overview of Different Topics and Applications of ML-FFs Discussed in This Sectiona

category ref ML-FF max. Natoms reference theory

electronic effects Sauceda et al.70 sGDML 21 CCSD(T), CCSD
Sauceda et al.214 sGDML 21 CCSD(T), CCSD
Sauceda et al.69 sGDML 21 PBE, CCSD(T), CCSD

thermodynamics Morawietz et al.260 BP-NNP 6912 RPBE, BLYP
Andrade et al.261 DeepMD 426 SCAN
Deringer et al.262 GAP 1000 LDA
Behler et al.263 BP-NNP 64 LDA
Bartok et al.264 GAP 23 496 PW91
Deringer et al.265 GAP 4096 PW91
Bonati et al.266 DeepMD 680 SCAN
Brickel et al.213 PhysNet 6 MP2

reactions Unke et al.267 RKHS 3 UCCSD(T)
Denis et al.268 RKHS 3 UCCSD(T)-F12a
Lu et al.269 PIP-NN 7 UCCSD(T)-F12a
Sweeny et al.270 PhysNet 7 MP2
Kas̈er et al.271 PhysNet 7 MP2
Rivero et al.272 PhysNet 19 M06-2X
Liu et al.273 BP-NNP 38 RPBE

nuclear quantum effects Chmiela et al.105 GDML 21 PBE
Chmiela et al.69 sGDML 21 CCSD, CCSD(T)
Schütt et al.274 SchNet 20 PBE
Sauceda et al.161 sGDML 21 CCSD, CCSD(T)
Hellström et al.275 BP-NNP 1700 RPBE

excited states Chen et al.276 HDNN 5 CASSCF
Westermayr et al.277 NN 6 MR-CISD
Westermayr et al.278 SchNet 6 MR-CISD, CASSCF

spectroscopy Gastegger et al.71 BP-NNP 209 BLYP, BP86, B2PLYP
Yao et al.195 BP-NNP 60 ωB97X-D
Raimbault et al.279 SOAP 80 PBE
Sommers et al.280 DeepMD 512 SCAN

aIn all cases, the type of employed ML-FF is given along with the number of atoms of the largest system used to study the respective phenomenon.
The basic level of reference theory (neglecting basis sets and dispersion corrections for clarity) is also reported.
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the dynamics is long enough to visit all configurations of the
system accessible under the simulation conditions.
To obtain meaningful statistics with MD simulations, many

thousands (or millions) of successive PES evaluations are
necessary. Because of their high computational cost, accurate
electronic structure PESs quickly become intractable for such
simulations, which is why highly efficient classical force fields
(FFs) are usually employed for running MD simulations.
However, this efficiency comes at a cost: Conventional FFs
completely neglect or misrepresent some potentially relevant
contributions to the potential energy, such as polarization,
charge transfer, or electronic effects, which limits their
usefulness in modeling complex chemical phenomena.
Machine-learned FFs (ML-FFs) offer a unique combination
of computational efficiency and high accuracy, opening up
tantalizing new possibilities in the simulation of the dynamics
of molecules, surfaces, materials and condensed phases. They
are able to model all chemical interactions−including those
that are typically neglected by conventional FFs. The high
accuracy of ML-FFs allows to obtain qualitatively different and
novel insights, which would otherwise only be accessible from
computationally infeasible ab initio MD (AIMD) simulations.
In the following, some chemical insights made possible by ML-
FFs, which could not have been obtained with conventional
FFs, are highlighted in greater detail. A brief overview is given
in Table 1. Note that the given examples represent only a tiny
fraction of the published literature, an exhaustive list is beyond
the scope of the current review. Interested readers can find
further examples in other review articles, for example, in refs
257−259.
4.1. Electronic Effects

A good example for the power of ML-FFs is a recent study of
the dynamics of small molecules (malondialdehyde, ethanol,
salicylic acid, paracetamol, aspirin) with atomic forces at
CCSD(T) quality.70 AIMD simulations were run at 500 K at
the PBE+TS/DFT level of theory167,168 and the collected
configurations randomly subsampled to calculate energies and
forces at the CCSD(T) level of theory (reference data for
aspirin was calculated at CCSD accuracy). For each molecule,
an ML-FF was constructed from 1000 data points with the
sGDML165 method (see Section 2.3.2) and used to run MD
simulations at 300 K. Running simulations of this quality with
ab initio methods is impossible, as they would require up to a
billion times more computation time. Conventional FFs were
shown to be no viable alternative to ML-FFs, as they do not
adequately describe, or even completely neglect, effects which
strongly influence the dynamics, and hence the properties, of
the studied molecules (Figure 18).
For example, in ethanol, the lone pairs of the oxygen atom

interact with the partially positively charged hydrogen atoms of
the methyl group. Because of this attraction, the configuration
where both lone pairs are adjacent to a hydrogen atom is
visited most frequently during a dynamics simulation. Any
derived property, for example, the Gibbs/Helmholtz free
energy surface (FES) or the infrared spectrum, is only accurate
when this effect is properly described. Conventional FFs do
not account for lone pairs and are thus unable to predict the
molecular properties correctly.
A similar effect can be observed in malondialdehyde. Here,

the lone pairs of the two oxygen atoms strongly repel each
other, which drives the dynamics away from configurations
where they are close. While conventional FFs can crudely

model electrostatic repulsion between the oxygen atoms with
negative partial charges, the steric contributions from the
overlap of the electron clouds is not described, causing a
qualitatively different dynamics.
Paracetamol is another molecule where lone pairs influence

the stability of specific configurations: The partially positively
charged phenyl-hydrogen adjacent to the oxygen atom of the
acetamide group interacts with its lone pairs and favors a
specific dihedral angle. Additionally, the nitrogen atom of the
acetamide group is sp2 hybridized, which allows conjugation to
the electrons in the phenyl system and leads to the planar
geometry of paracetamol. When the nitrogen hybridization
state is changed to sp3, the energetically favorable interaction is
broken and corresponding configurations are thus rarely visited
during room temperature dynamics. However, at higher
temperatures, the hybridization state may switch frequently−
conventional FFs are unable to describe this.
Another important electronic effect can be observed in

aspirin. Here, an occupied (lone pair) n orbital of the carbonyl
group overlaps with an unoccupied antibonding π* orbital in
the ester group. This n → π* interaction dictates the relative
arrangement of these functional groups in the global minimum
structure.214 The effect is even amplified during dynamics since
thermal fluctuations enhance the overlap.69

These and many other electronic effects, for example,
n → σ* interactions, hyperconjugation, and Jahn−Teller
distortions, are captured automatically by ML-FFs. In contrast,
including them in conventional FFs would require additional
terms, whose functional form (and even which effects need to
be modeled) are typically unknown a priori.
4.2. Thermodynamics

A typical application of classical FFs is the study of
thermodynamic properties of bulk systems, such as enthalpies,
entropies, and phase diagrams. However, their limited accuracy
is a major obstacle for quantitative predictions, as small

Figure 18. Visualization of electronic effects, which are accurately
modeled by ML-FFs, but neglected by conventional FFs. Electron
lone pairs, hybridization changes and orbital donation effects all
influence the dynamics of molecules and hence the properties that are
computed from MD simulations. When predicting, for example,
Gibbs/Helmholtz free energy surfaces (FESs) or molecular spectra,
neglecting them will lead to qualitatively different results.
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inaccuracies in the interaction of a few particles will inevitably
lead to big discrepancies when studying many particles. A good
example for this are van der Waals (vdW) interactions. They
are weak contributions to the total potential energy for small
molecules in gas phase, but they add up in large condensed
systems and bulk materials and can strongly influence their
properties and dynamics.281 While conventional FFs account
for vdW interactions, they typically do so with a relatively
crude model based on the Lennard-Jones potential,14 which is
insufficient for quantitative predictions in many cases. A prime
example is water: It is the most studied liquid in literature and
many different conventional FFs for water (some with
additional special-purpose terms) have been proposed in the
last decades, yet none of them is able to reproduce all
experimentally measured properties of water in MD simu-
lations.282

Here, ML-FFs offer a promising alternative. Morawietz et
al.260 trained a descriptor-based NNP on periodic config-
urations of liquid and crystalline water, for which reference
data was calculated with different DFT functionals. MD
simulations with the ML-FF revealed that the thermodynamic
anomalies of water, such as its density maximum and negative
volume of melting, are due to a delicate balance of weak vdW
forces. The study was able to accurately predict experimentally
measured radial distribution functions, as well as temperature
dependent shear viscosities and diffusion coefficients. As ML-
FFs are naturally able to describe bond breaking and
formation, the study could even investigate proton transfer
between different water molecules.
The ability to analyze thermodynamic properties of reactive

events is a major advantage of ML-FFs over conventional
methods. For example, a recent study investigated the Gibbs
free energy of proton transfer in liquid water at a titanium
oxide surface.261 A descriptor-based NNP was trained using
reference data collected through an adaptive sampling
approach and used to run MD simulations. The study revealed
that a significant fraction of water molecules forms short-lived
hydroxyl groups on the titanium oxide surface, which strongly
influence its surface chemistry. Such insights are key to
understanding phenomena such as surface functionalization
and photocatalytic processes.
Another application where the flexibility of ML-FFs is a

major advantage is the modeling of bulk materials. For
example, Gaussian approximation potentials (GAPs, see
Section 2.3.3) and NNPs have been constructed for elemental
carbon262 and silicon.263−266 They allow researchers to
investigate a wide range of phenomena of liquid, crystalline,
and amorphous solid phases including defects and crack
propagation. Modeling these effects accurately is only possible
with ML-FFs or prohibitively expensive AIMD simulations. It
is even possible to predict accurate phase diagrams of such
systems with ML-FFs.263,264 Since this requires a correct model
of bond formation and breaking, as well as changes of bonding
patterns, such insights could not be obtained from conven-
tional FFs.

4.3. Reactions

One of the most significant advantages of ML-FFs over
conventional FFs is their natural ability to model chemical
reactions. Even in cases where it is possible to construct special
purpose classical FFs that are able to describe reactions, they
are typically much less accurate than their ML-FF counter-
parts. For example, a recent study compared an ML-FF

constructed with a message-passing NNP with two classical
methods to obtain a reactive FF for the Cl−CH3−Br
transformation.213 Here, the ML-FF achieved up to 3 orders
of magnitude lower errors and yielded qualitatively and
quantitatively different predictions for the Helmholtz free
energy surface along the reaction path. It is therefore no
surprise that one of the first fields where ML-FFs were
employed with great success are reaction dynamics. Here, the
chemical transformations associated with molecular collisions
over short time and length scales are studied. These
simulations offer detailed atomistic insights into the reaction
mechanism, providing access to rate constants and scattering
cross-sections, as well as insights on how the molecular energy
is distributed between different modes, all of which can be
directly related to experiments. To yield quantitative
predictions, sufficient statistics and highly accurate PESs are
required, making them an excellent application for ML-FFs.
Studies typically involve small molecular systems, which are
treated at high levels of accuracy, such as the collision of N2

+

and Ar267,268 or the Cl+CH3OH → HCl+CH3O/CH2OH
reaction.269 Typical conventional FFs require fixed bonding
patterns and are thus intrinsically unsuited for studying
chemical reactions. While there also exist reactive variants of
classical FFs, they do not reach the accuracy of ML-FFs. For
example, a recent study investigated the thermal activation of
methane by MgO+ with a message-passing NNP (see Section
2.3.4) and a reactive classical FF.270 Here, the ML-FF achieved
prediction errors up to two orders of magnitude lower than the
classical variant compared to ab initio data. In addition, the
disagreement between experimental rate constants and those
predicted from MD simulations was lower by a factor of two
with the ML-FF compared to the values obtained from the
classical FF. The remaining discrepancy between prediction
and experiment was further investigated and it was determined
that the deviation was not due to inaccuracies of the ML-FF
per se but instead could be traced back to the multireference
character of the transition state, that is, problems with the ab
initio reference data itself.
Even though it is possible to construct classical reactive FFs

for specific reactions, there are cases where this is exceedingly
difficult. A good example is a recent study where the
phototautomerization reaction of acetaldehyde was inves-
tigated, which is speculated to be a major pathway for formic
acid formation in the atmosphere.271 After being photoexcited,
acetaldehyde contains enough energy that it may not only
tautomerize to ethenol, but also dissociate into carbon
monoxide and methane, or into hydrogen and ethenone. An
accurate description of all three possible reaction pathways
with the same FF is extremely difficult to achieve with
conventional methods. The NNP used for the study on the
other hand was trained on MP2/aug-cc-pVTZ283,284 reference
data and allowed an unbiased description of all relevant
processes at ab initio quality. Analyzing a total of 12 000
individual trajectories, the study concluded that the formation
of ethenol from phototautomerization of acetaldehyde is
unlikely under atomospheric conditions. This insight could
not have been obtained by running AIMD simulations in a
reasonable time frame: The combined simulation time of 1 μs
would amount to ten billion single point calculations (a time
step of Δt = 0.1 fs was used due to the large excitation
energies). In contrast, less than 500k structures were used for
training the ML-FF, that is, the time spent for running ab initio
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calculations was reduced by more than five orders of
magnitude by employing an ML-FF.
Because of the efficiency of ML-FFs, scattering simulations

can now even be extended to involve larger organic molecules.
For example, a study of the minimum dynamic path285 of
Diels−Alder reactions of 1,3-dibromo-1,3-butadiene and
maleic anhydride with an end-to-end NNP has revealed that
molecular rotations are a major driving force for the formation
of products,272 an effect which had not been described
previously in the literature for this type of reaction. ML-FFs
can even be applied to reactions between molecules and
surfaces. For example, a study by Liu et al.273 investigated
(reactive) HCl scattering on a gold surface using a descriptor-
based NNP.
For a recent review on neural network-based PESs for small

molecules and reactions, see ref 286.

4.4. Nuclear Quantum Effects

Predictive simulations of molecular systems and materials
require not only highly accurate representations of the
potential energy surface (PES) but also appropriate statistical
sampling of the PES. While classical MD simulations are
sufficient for this in some cases, the quantum nature of nuclei
plays an important role in many systems. Nuclear quantum
fluctuations are a fundamental phenomenon in nature resulting
from Heisenberg’s uncertainty principle;291 hence, physical and
chemical properties of molecular or biological systems, as well

as nano- and bulk-materials, may be affected by them up to
certain extent. In particular, light elements, such as protons and
atoms in the first row of the periodic table, are prone to display
nuclear quantum effects (NQEs) even at room temperature.
Furthermore, materials or molecules formed by heavier atoms,
but having strong bonds or being at low temperatures, exhibit
significant NQEs.292−299

Consequently, to generate predictive simulations of many
physical properties, NQEs must be incorporated. A widely
used methodology to perform quantum dynamics is path
integral molecular dynamics (PIMD). This method is based on
the isomorphism between a quantum particle and a classical
harmonic ring polymer of P beads (i.e., P harmonically coupled
copies of the particle), where the equality holds for P → ∞
(see Figure 19A).82 In practice, convergence of thermody-
namical properties can be achieved using only a small number
of beads. For light atoms at room temperature for example,
P ≈ 16−32 is often sufficient to converge mechanical
properties.165,287,289,297 This number can be reduced even
further by using more sophisticated thermodynamic estima-
tors.300

Given that PIMD simulations require energies and forces for
P copies of the system of interest, it is infeasible to use ab initio
methods to derive them in most cases. There are some
exceptions. For example, PIMD simulations to study the IR
spectrum of the porphycen molecule have been performed
using DFT with the B3LYP functional, and it was shown that

Figure 19. (A) Schematic description of the path integral (ring polymer) molecular dynamics (PIMD) method, where quantum particles are
approximated by a classical ring polymer with P beads. There is an exact isomorphism between these two systems when P → ∞, that is, their
statistical properties become equivalent. (B) PIMD simulations using DFT or coupled cluster calculations. (1) Coupled cluster PIMD simulations
of the Zundel model to compute 1H magnetic shielding tensor (adapted with permission from ref 287. Copyright 2015 published by the PCCP
Owner Societies under CC BY-NC 3.0 https://creativecommons.org/licenses/by-nc/3.0/.). (2) Example of hydrogen-bond networks and their
NQE implications on biological functions and enzyme catalysis (adapted with permission from ref 288. Copyright 2017 American Chemical
Society.). (3) IR spectrum of the porphycen molecule computed from PIMD simulations (adapted with permission from ref 289. Copyright 2019
American Chemical Society.). (C) PIMD simulations using ML-FFs trained on DFT or coupled cluster data. (1) Ultralow temperature dynamics of
the Zundel model obtained from PIMD simulations (adapted with permission from ref 290. Copyright 2018 American Chemical Society.). (2)
Comparison of the statistical sampling of different conformers of ethanol between experiment and simulations (adapted with permission from ref
69. Copyright 2018 Chmiela et al.). (3) Schematic description of the enhancement in intra- and intermolecular interactions due to NQEs (adapted
with permission from ref 161. Copyright 2020 Sauceda et al.).
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the correct Helmholtz free energy and vibrational spectrum
can only be recovered by considering NQEs (see
Figure 19B:3).289 Another example includes PIMD simulations
of the Zundel model at the CCSD level of theory to study the
impact of NQEs on its structure and the 1H magnetic shielding
tensor.287 However, both of these studies required super-
computers to make the calculations possible in a reasonable
time frame. On the other hand, ML-FFs can replicate the same
results at a fraction of the computational cost, that is, speed-
ups by a factor of 105−107 (depending on the reference level of
theory) can be achieved.69,109 This gain in computational
efficiency makes it possible to run PIMD simulations for a wide
range of systems and offers the chance to reveal new chemical
and physical insights.
For example, Chmiela et al.105 performed room temperature

PIMD simulations of aspirin using a GDML model (see
Section 3.7.1) trained on PBE+TS167,168 reference data to
investigate the paths followed between different minima on its
PES. In a followup study, Chmiela et al.69 compared free
energies and vibrational density of states of a variety of
medium-sized molecules obtained from PIMD simulations
with a model trained on CCSD or CCSD(T) reference data to
the same quantities obtained from a model trained on PBE
+TS/DFT data. The authors found that even though the PESs
at the two different levels of theory are very similar, tiny
differences may still lead to largely different free energies.
Additionally, it was shown that the experimentally determined
populations for different conformations of ethanol can only be
recovered from simulations when including NQEs (see
Figure 19C:2).
In another study, Schütt et al.274 investigated the dynamics

of C20 fullerene using a NNP trained on PBE+TS/DFT
reference data. Here, including NQEs broadens the radial
distribution function significantly, which also increases the
molecular polarizability.161 A change in the distribution of
interatomic distances also influences electronic effects: A
recent study of ref 70. (mentioned earlier in the paragraph on
electronic effects) investigated NQEs in small organic
molecules.161 The study revealed that NQEs can dynamically
strengthen molecular interactions by enhancing n → π*
donation through increasing orbital overlap, or by strengthen-
ing electrostatic interactions between neighboring charge
densities (see Figure 19C:3). Another interesting observed
effect is a temporary change of bond orders, which can lead to
emerging localized transient states of methyl rotors. The study
also showed that vdW interactions are strengthened by NQEs:
Since interatomic distances expand on average due to thermal
and quantum dilations, the molecular polarizability is also
increased (see Figure 19C:3). Other observed implications of
NQEs include “bonding” between hydroxyl groups and
hindered rotor dynamics, which leads to molecular stiffening
and smoother Helmholtz free energy surfaces.
ML-FFs also make it possible to go far beyond the system

size accessible with standard electronic structure methods. In
ref 275, a descriptor-based NNP was used to study the
influence of NQEs on aqueous NaOH solutions of different
concentrations (∼1000 atoms). It could be shown that NQEs
exert a subtle influence on the solvation structure in the Na+

environment and significantly increase the proton transfer rates
and hence diffusion coefficients of the different species. The
accuracy of the ML-FF also made it possible to identify error
cancellation effects in the reference method, leading to

artificially good agreement with experiment in the absence of
NQEs.

4.5. Excited States

The Born−Oppenheimer approximation breaks down when
modeling the dynamics of molecular excited states, which are
essential for understanding photochemical processes. An
extension to classical MD, which allows for the simulation of
such phenomena, is quantum-classical surface hopping MD. In
this approach, the excited state dynamics of a molecule are
simulated by letting it evolve on a set of PESs associated with
the different electronic states. To describe the distribution of
the molecule between the different states, the effective PES
governing the time evolution changes according to stochastic
criteria, for example, based on coupling terms between the
relevant states. The correct quantum statistics are then
recovered from multiple independent simulations. These
simulations are computationally intensive, as they not only
require the computation of multiple PES but also different
coupling terms. This is further amplified by the need for a large
number of trajectories to obtain reliable statistics. As such,
quantum-classical surface hopping simulations can profit
greatly from the efficiency and versatility of ML-FFs.
In ref 276, for example, the authors used descriptor-based

NNPs to study the excited state dynamics of the methylene
imine molecule, as well as regions close to the conical
intersection between the singlet ground and excited states. It
could be shown that the NNPs are able to recover the effective
PES with high accuracy and allow for efficient simulations to
estimate the state populations of the system. Here, the
coupling between the different surfaces was computed based
on the Zhu−Nakamura approximation,301 which relies on the
energy differences between states. More accurate quantum
mechanical descriptions of the interstate couplings rely on so-
called nonadiabatic coupling vectors (NACs), which introduce
several additional challenges from an ML perspective. First,
NACs exhibit the same rotational equivariance as molecular
forces. Second, they grow rapidly for states lying close in
energy. And finally, as a quantity computed between different
states, they are determined only up to an arbitrary phase. The
latter property in particular complicates the construction of
ML models, as the random nature of the phase factor needs to
be compensated during training. Early works relied on a costly
preprocessing of the reference data.277 Ref 278, however,
demonstrated that the phase problem can be overcome by
introducing phase-less loss functions during the training
procedure. Using a modified end-to-end NNP to describe
the excited state dynamics of the methylenimmonium cation, it
could be shown that using such loss terms completely
eliminates the need for a preprocessing step. In addition, the
work modeled the NACs as derivatives of a proxy potential,
thus accounting for their transformation under rotations of the
molecule. The combination of these approaches not only made
it possible to obtain accurate population statistics for the
studied system, but could also greatly extend the time scales
accessible by the simulation beyond the limits of conventional
electronic structure approaches.
For a recent review on machine learning for electronically

excited sates, see ref 302.

4.6. Spectroscopy

As stated at the beginning of this section, MD simulations are
excellent tools to model the temporal autocorrelation functions
of various quantities, which can in turn be used to predict
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experimental observables, such as diffusion coefficients. These
quantities need not be restricted to properties derived from the
PES, but they encompass other electronic properties such as
dipole moments or polarizabilities. Access to the correspond-
ing time autocorrelation functions enables the simulation of a
wide range of molecular spectra, which can be directly related
to experiment. The most prominent examples are infrared and
Raman spectra derived from the autocorrelation functions of
dipole moments and polarizabilities, respectively. Both types of
vibrational spectra are of great practical interest since they can
be measured accurately via experiment and provide insights
into the atomic structure of molecules and materials. However,
these spectra can be subject to a series of complex quantum
mechanical effects such as vibrational anharmonicities. Hence,
high level electronic structure treatments are required to obtain
quantitatively accurate predictions of experimental results.
Unfortunately, computing the required autocorrelation func-
tions based purely on electronic structure calculations quickly
grows prohibitively expensive, as simulations covering
sufficient time scales are required to yield reliable spectra. In
addition, if the influence of temperature or other phenomena
should be studied in detail, a large number of such simulations
is required. Recently, ML-FFs have emerged as invaluable tools
for obtaining reliable molecular spectra. A growing number of
ML-FFs now provide access to quantities beyond the PES, for
example, dipole moments or polarizabilities. As such, they offer
the possibility to perform these simulations in only a fraction
of the time required by an ab initio approach or even make
them possible at all.
Ref 71 demonstrates the potential inherent to ML-FFs based

on the prediction of infrared spectra for organic molecules
including the protonated alanine tripeptide. By combining a
descriptor-based NNP model of the PES with a dipole moment
model based on latent NN-predicted atomic charges, highly
accurate infrared spectra could be obtained for all studied
systems. The efficiency of such an approach was demonstrated
based on an alkane containing more than 200 atoms, where it
was possible to reduce a projected computation time of 9000
years with the original ab initio method to only a few days
(including the reference calculations needed for training the
ML models). Moreover, the high accuracy of the predictions
made it possible to identify shortcomings of the original
reference methods and study how they influence the infrared
spectrum of the tripepdtide. A similar latent charge based
approach was employed in ref 195 to model infrared spectra of
various amino acids. This study not only obtained accurate
spectra but also demonstrated that the latent charges predicted
by the dipole model constitute a valid ML driven scheme for
deriving atomic partial charges, which can be used to model
long-range electrostatic interactions explicitly. This scheme has
since been employed in many physically augmented models
(e.g., TensorMol195 or PhysNet108).
In a similar manner, ML models capable of predicting

polarizability tensors offer access to Raman spectra. Ref 279
introduces a symmetry adapted approach for modeling
polarizability tensors using Gaussian process regression
(GPR) based on the SOAP117 kernel. The authors use this
model to study the Raman spectra of paracetamol in gas phase
and various molecular crystals and achieve excellent agreement
with electronic structure methods in both cases. Not only is
the proposed approach highly data efficient, requiring only a
small number (<1000) of reference data, but it could also be
shown that the resulting model is transferable between

different polymorphic forms of the crystal. Ref 280 models
Raman spectra of liquid water using descriptor-based NNPs to
predict molecular polarizabilities. The computational efficiency
of the approach made it possible to obtain Raman spectra for a
system containing 416 water molecules based on two
nanosecond trajectories at DFT level accuracy, a feat that
would be infeasible with the original reference method. As a
consequence, the influence of temperature effects on the
Raman spectra of water and heavy water could be studied in
detail. The atomic resolution of the employed ML approach
made it possible to decompose the simulated spectra into
intramolecular and intermolecular contributions, offering
insights into the mechanisms governing the temperature
dependence of the different spectral features.

5. CHALLENGES

Following the best practices outlined in the previous section,
the current generation of ML-FFs is applicable to a wide range
of problems in chemistry that involve small- to medium-sized
systems. While this space of chemical compounds is already
significant in size, the “dream scenario” of chemists and
biologists referenced in the introduction can only be realized
with access to larger system sizes. Not only does the number of
stable structures increase exponentially with added atomistic
degrees of freedom303,304 but also many interesting phenom-
ena play out at nanoscale resolution, which is inaccessible to
ML methods as of yet. This is because some steps involved in
the construction of ML-FFs, like sampling the reference data,
which are solvable at small scale, become seemingly
insurmountable obstacles at larger scales due to unfeasible
computing times. The complexity of interactions, for example,
the nonclassical behavior of nuclei, as well as significant
contributions from large fluctuations, increase the space of
conformations that need to be learned. To further complicate
things, the cost of accurate ab initio calculations increases
steeply with expanding system size, limiting the amount of
reference data that can be collected within a reasonable time
frame. This also means that a growing number of atom
correlations need to be represented by a model to capture the
full scope of interactions present in the real system. Below,
some considerations in reconciling the somewhat contradicting
demands of scalability, transferability, data efficiency and
accuracy in large-scale ML-FFs are outlined.

5.1. Locality and Smoothness Assumptions

A fundamental challenge that must be faced by ab initio
methods, conventional FFs, and ML models alike is the many-
body problem. Most properties of a physical system are
determined by the interaction of many particles, whether those
are electrons or, on a higher abstraction level, atoms. In fact,
the reason that ab initio calculations are expensive to obtain is
due to the challenging computational scaling properties of
high-dimensional many-body problems. As a result, the
hierarchy of different levels of theory is directly defined by
the level of correlation treatment in the respective wave
function parametrization. Because the number of electronic
degrees of freedom of a system is much higher than the
number of atoms, the computational limitations of ab initio
methods become evident very quickly, even for small systems.
Atomistic approximations scale more favorably because they
need to correlate less particles, but they are subject to the same
scaling laws. The only escape is to neglect some correlations in
favor of a reduced problem size. Unfortunately, it is to date
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impossible to reliably determine which interactions can be
removed with minimal impact, without compromising the full
many-body solution. Thus, the ideal of a local model is in
conflict with the very nature of many-body systems. Although
it is possible to recover some effects such as nonlocal charge
transfer by means of a charge equilibration scheme,305,306 a
general solution for this problem does not exist. While not fully
justified from a physics perspective, assuming locality is still a
useful inductive bias, which can help generalization and
computational efficiency. It also helps when collecting
reference data, as it implies that larger systems can be
predicted using the information learned from smaller systems.
Another assumption, which all ML-FFs discussed in this review
make, is that the PES is smooth. This is a necessary
requirement for most practical applications since a nonsmooth
PES implies force discontinuities, which would lead to
instabilities during MD simulations. Smoothness is also a

requirement from the ML perspective, as only regular signals
can be reconstructed from limited observations.
For most commonly used NNPs and many kernel-based

ML-FFs, locality is built into the design explicitly through the
introduction of a cutoff radius. The global interactions between
atoms are modeled by accumulating individual local atomic
contributions. In this “mean-field approximation”, the inter-
action of a particle with its surroundings is reduced to an
effective one-body problem, that is, an interaction of that
particle with the average effect of its neighbors. As similar
neighborhoods can be identified in different compounds across
chemical space, these assumptions allow to build models from
reference calculations of small molecules, which are trans-
ferable to much larger structures.307,308 However, the lack of
explicit higher-order terms comes at the cost of potentially
loosing some important interaction effects, similar to the

Figure 20. Energy profiles of different ML-based PESs for a rotation of the dihedral angle between the terminal methylene groups of cumulenes
(C2+nH4) of different sizes (0 ≤ n ≤ 7). All reference calculations were performed with the semiempirical MNDO method309 and models were
trained on 4500 structures (with an additional 450 structures used for validation) collected from MD simulations at 1000 K. Because rotations of
the dihedral angle are not sufficiently sampled at this temperature, the dihedral was rotated randomly before performing the reference calculations.
Instead of a sharp cusp at the maximum of the rotation barrier, all models predict a smooth curve. Predictions become worse for increasing
cumulene sizes with the cusp region being oversmoothed more strongly. For n = 7, all models fail to predict the angular energy dependence. Note
that NNP models (such as PhysNet and SchNet) may already fail for smaller cumulenes when the cutoff distance is chosen too small (rcut = 6 Å), as
they are unable to encode information about the dihedral angle in the environment-descriptor. However, it is possible to increase the cutoff
(rcut = 12 Å) to counter this effect.
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Hartree−Fock method and Kohn−Sham DFT in ab initio
calculations.
On the other hand, some models (e.g., (s)GDML) capture

global correlations in the sense that a single prediction is
obtained for the whole structure. Of course, this relies on
reference calculations that are accurate enough to contain the
relevant information. Global interactions of large systems can
not be accurately inferred from a training set of small
molecules or molecular fragments, which is why reference
calculations for the exact target structure are necessary. It can
therefore become difficult to collect enough reference data for
large structures. In addition, even models that use no atom-
wise decomposition might still implicitly assume that
interactions are local to some degree due to their chemical
descriptor. For example, in (s)GDML models, systems are
encoded as a vector of inverse pairwise distances. Therefore,
structural changes between distant atoms contribute less
strongly to changes in the overall descriptor than proximal
atoms.
While locality and smoothness are valid assumptions for the

majority of chemical systems, there are pathological cases
where they break down and ML models that rely on them
perform poorly. As an example, consider cumulenes−hydro-
carbons of the form C2+nH4 (n ≥ 0) with n + 1 cumulative
double bonds. These molecules have a rigid linear geometry
with the two terminal methylene groups forming an
equilibrium dihedral angle of 0° (when n is even) or 90°
(when n is odd). Rotating the dihedral angle out of its
equilibrium position results in a sharp increase in potential
energy even though the methylene groups may be separated by
several angstroms when n is large. This is due to the
energetically favorable overlap of π-orbitals along the carbon
chain (a highly nonlocal interaction), which is broken when
the methylene groups are rotated against each other.
Additionally, the potential energy exhibits a sharp “cusp” at
the maximum energy (i.e., it is not smooth), because the
ground state electronic configuration switches abruptly from
one state to another (strictly speaking, multireference
calculations would be necessary here). One-dimensional
projections of the PESs predicted by ML-FFs along the
rotation of the dihedral angle reveal several problems
(Figure 20). For example, all models predict smooth
approximations by design, which is beneficial for running
MD simulations, but results in large prediction errors around
the cusp. Further, when the number of double bonds (n + 1),
that is, the “non-locality” of relevant interactions, is increased,
the quality of predictions decreases dramatically, until all
models are unable to reproduce the energy profile.
Note that by design, NNPs relying on message-passing are

unable to resolve information about the dihedral angle if
information between hydrogen atoms on opposite ends of the
molecule cannot be exchanged directly (i.e., rcut is too small)
and predict constant energies in this case. The same is true for
descriptor-based NNPs, as fingerprints of chemical environ-
ments also only consider atoms up to a cutoff (see eqs 22 and
23). Any kernel method taking as input local structural
descriptors relying on cutoff radii (e.g., SOAP117 or
FCHL19107) will suffer from the same problems. Even when
a “global” descriptor of chemical structure such as inverse
pairwise distances is chosen (e.g., Coulomb matrix28), changes
in the dihedral angle between distant groups of atoms are not
resolved sufficiently for accurate predictions (see sGDML
model in Figure 20). The only way to fix this problem in

general is to drop the locality assumption completely, for

example by including all ( )N
4 possible dihedral angles in the

structural descriptor (without introducing additional factors
that decrease the weight of these features with increasing
distance between atoms). However, due to the combinatorial
explosion of the number of possible dihedral angles, this would
lead to extremely large descriptors whenever the number of
atoms N is not very small. The resulting models would be slow
to evaluate and require a lot of reference data to give robust
predictions (to prevent them from entering the extrapolation
regime). An expert choice, i.e., including only a single relevant
dihedral angle in the descriptor, is a possible way around this
issue, but requires prior knowledge of the problem at hand and
goes somewhat against ML philosophy.
As a final remark, it should be mentioned that conventional

FFs only include terms for dihedral angles between directly
bonded atoms, so they are equally unable to predict the energy
profiles of the larger cumulenes shown in Figure 20. As such,
relying on chemical locality is an assumption made by virtually
all methods for approximating PESs and is not specific to just
ML methods.

5.2. Transferability, Scalability, and Long-Range
Interactions

The concept of chemical locality discussed above also plays a
central role in the transferabilty and scalability of ML models
for atomistic systems. Transferability indicates how well
models can adapt to compounds varying in their chemical
composition, while scalability indicates how efficiently these
models scale with respect to the size of systems modeled. Both
concepts are closely related and inherently rooted in chemical
locality. The assumption that interactions between atoms are
local implies that similar structural motifs will give rise to
comparable interactions and hence similar contributions to the
properties of a molecule or material. In an ML context,
chemical locality allows a model to reuse the information
learned for different parts of a molecule for similar features in
different systems. In this manner, a large atomistic system
could in principle be assembled from smaller components like
a jigsaw puzzle.307 The former aspect is crucial to make models
transferable, while the latter allows for the development of
architectures whose evaluation cost scales linearly with system
size.
ML-FFs exploiting chemical locality offer several advantages

compared to other models. If trained properly, they can be
applied to systems of different size and composition. The
training procedure benefits in a similar manner, as local models
can be trained on structures containing different numbers of
atoms. Moreover, it is also possible to use only fragments of
the original system during construction of a model. This
property is very attractive in situations where accurate
reference computations for the whole system are infeasible
due to system size or scaling of the computational method.
Local chemical environments are also less diverse than
complete structures, potentially reducing the need for extensive
sampling and decreasing the chances that models enter the
extrapolation regime in a production setting. In addition, local
models scale linearly with system size, as interactions are
limited to the cutoff radius and can be evaluated efficiently. In
contrast, models without cutoffs are typically more limited in
their practical applicability for extended systems. They always
require reference computations to be performed for the whole
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system and, once trained, can only be reused for this particular
molecule or material.
Despite these advantages, local ML models suffer from

several inherent problems. To construct models that exploit
locality, a chemical system needs to be partitioned in one way
or another. This can for example be achieved by limiting
interactions to terms involving only a certain number of atoms
(similar to conventional FFs) or by restricting them to local
atom-centered environments. These approximations place
strong limitations on which kind of interactions can be
described. As a result, local ML models have difficulty when
dealing with the situations where nonlocal effects are
important, such as strongly conjugated systems and excited
states (see Section 5.1). For standard simulations, the presence
of long-range interactions, such as electrostatic and dispersion
effects, are much more common phenomena. These are
particularly important for modeling extended systems, where
ML models are typically believed to offer a significant
advantage over more conventional FFs. Since the structure
and dynamical behavior of such systems is influenced greatly
by long-range interactions, ML models need to be able to
account for them in a satisfying manner.
Recovering long-range effects necessitates a balancing act

between physical accuracy and computational efficiency, as the
scalability of local models hinges on there being a limited
number of interactions which need to be evaluated. This feat is
further complicated by the typical energy scales of these
interactions, which are small compared to local contributions
such as bond energies. For these reasons, it is not advisable to
account for long-range interactions by simply increasing the
size of local environments. While local models with sufficiently
large cutoffs are able to learn the relevant effects in principle, it
may require a disproportionately large amount of data to reach
an acceptable level of accuracy for an interaction with a
comparably simple functional form. The reason is that average
gradients and curvature in different regions of the PES may
differ by several orders of magnitude, which makes it difficult
to achieve uniformly low prediction errors across all regions.
Hence, an optimal description would require to employ
different characteristic scales.
For illustration, consider the following toy examples: In the

first variant, a Lennard-Jones (LJ) potential14 is separated into
a region around its minimum, a repulsive short-range, and an
attractive long-range part. The task is to learn each of the three
regions with a separate model (see Figure 21a). In the second
variant, a single model is trained on all regions at once (see
Figure 21b). Here, all models are kernel-based and use a
Gaussian kernel (eq 4). The kernel hyper-parameter γ is
optimized by a grid-search and cross-validation. Compared to
the models trained on individual regions, the prediction errors
of the model for all regions increase by around an order of
magnitude. Further, it shows spurious oscillations between
training points in the long-range region. When the optimal
values of γ for the different models are compared, the reason
for failure when training on all regions at once becomes
apparent: The optimal values of γ are 198.88, 75.47, 0.08 for
the short-, middle-, and long-range models, respectively, which
highlights the multiscale nature of the PES. On the other hand,
when training on all regions at once, the model necessarily has
to compromise, which leads to an optimal value of γ = 22.12.
In this toy example, the multiscale problem can be solved by
switching from using r as a structural descriptor to the more
appropriate inverse distance r−1 (Figure 21c). Unfortunately,

for realistic (high-dimensional) PESs with multiple minima, it
can be difficult to find an appropriate descriptor to address the
multiscale nature of the PES, which leads to data-inefficient
models. As a result, more training data is needed to reach an
acceptable accuracy, which is problematic considering the
computational cost of high-quality reference calculations.
One possibility of overcoming these limitations is by instead

partitioning the energy into contributions modeled entirely via
ML (short-range) and contributions described via explicit
physical relations based on local quantities predicted via ML
(long-range). A prime example for such an approach is the
treatment of electrostatics, as was first introduced in ref 221.
Here, an ML model is used to predict partial charges for each
atom based on their local environment. These charges can then
be used in standard Coulomb and Ewald summation to
compute the long-range electrostatic energy of a system. While
such schemes initially relied on point charge reference data
obtained from (arbitrary) partitioning methods of the ab initio
electron density (e.g., Hirshfeld charges310), they have since
been extended to operate on charges derived from an ML
model for dipole moments (a true quantum mechanical
observable).71,108,195 Here, scalar partial charges qi are
predicted for each atom i and the molecular dipole moment
is constructed as μ = ∑i qiri, where ri are the atomic positions
(the predicted qi can be corrected to guarantee charge
conservation108). The discrepancy between reference and
predicted dipole moments is included in the loss function
used for training the model (see Section 3.5) and the partial
charges consequently derived in a purely data-driven manner.
Contrary to electrostatics, accounting for dispersion

interactions is not as straightforward, because the exact
physical form of dispersion interactions is still debated and a
variety of approximate schemes have been proposed.281 In

Figure 21. Lennard-Jones potential (thick gray line) predicted by
KRR with a Gaussian kernel. (a) Potential energy is decomposed into
short- (red), middle- (magenta), and long-range (blue) parts, which
are learned by separate models (symbols show the training data and
solid lines the model predictions). The mean squared prediction
errors (in arbitrary units) for the respective regions are shown in the
corresponding colors. (b) Entire potential is learned by a single model
using the same training points (green). All models in panels a and b
use r as the structural descriptor. (c) Single model learning the
potential, but using r−1 as structural descriptor (yellow). The mean
squared errors (a.u.) for different parts of the potential in panels b and
c are reported independently to allow direct comparison with the
values reported in panel a.
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addition, dispersion corrections typically depend on coef-
ficients computed from atomic polarizabilities as local
properties. The corresponding quantum mechanical observable
is the molecular polarizability tensor. In contrast to charges
(scalars) derived from dipole moments (a vector quantity),
predicting molecular polarizabilities requires rotationally
equivariant ML models.311 Because of this, many ML
approaches rely on the same empirical pairwise dispersion
potentials employed for correcting density functional theory
computations.108,312,313

To summarize, local ML architectures are a promising
approach toward transferable and scalable models, but they
have a number of drawbacks that will still need to be addressed
in the future. Promising alternative approaches to achieve
transferability are ML models based directly on electronic
structure methods, i.e., “semi-empirical ML”57,314,315 and
models for electron density and Hamiltonians.55 These
approaches express fundamental quantum chemical quantities
in a local representation, for example, Hamiltonian matrix
elements in an atomic orbital basis. Nonlocality can then be
introduced via the “correct” mathematical mechanism, for
example, matrix diagonalization in the case of Hamiltonians.
This physically motivated structure allows such models to
recover a wide range of interactions while still being
transferable. They are also better suited to predict intensive
properties of molecules (whose magnitude is independent of
system size), where assuming additive atomic contributions is
not valid. A downside of such models compared to
conventional ML-FFs is the increased computational cost
due to the additional matrix operations.
With respect to scalability, hybrid approaches similar to

QM/MM25 might constitute valid alternatives to pure ML
models. Although several orders of magnitude more efficient
than electronic structure theory, even local ML models
encounter problems when faced with systems containing tens
of thousands of atoms. Compared to conventional FFs, the
more complex functional form underlying ML-FFs leads to an
increased computational cost. In such cases, partitioning the
system into regions treated at different levels of approximation
can lead to a significant speedup. ML models can for example
be embedded into regions modeled by classical force fields,
yielding ML/MM like simulation protocols. Restricting
elaborate ML approaches to only a subset of a chemical
systems would make it possible to employ more accurate
approximations in a manner analogous to conventional
QM/MM. For example, in ref 316, the authors study
protein−ligand binding with a ML/MM approach. The ligand
is described by an NN-based ML-FF and treated as if it was in
gas phase. Coupling to the protein environment (described by
a conventional FF) is achieved solely through nonbonded
dispersion and electrostatic interactions. The disadvantage of
such a simple embedding is that the “quantum region” cannot
be polarized by the “classical region”. A more sophisticated
embedding was recently proposed by Gastegger et al.317 Here,
the region described by the ML-FF is explicitly polarized by
the electric field induced by surrounding point charges, that is,
the electric field is an additional input to the model. Alternative
approaches, describe the effect of the classical environment by
augmenting structural descriptors such as ACSFs by additional
terms explicitly depending on the MM point charges.318 A
similar approach is followed in ref 319, where the classical
environment is described by auxiliary atom types.

6. CONCLUDING REMARKS

The last decades have witnessed significant advances in
statistical learning that allowed ML techniques to enter our
daily lives, industrial practice, and scientific research.
Classically, automation in industry and scientific fields relied

on hand-crafted rules that represented human knowledge.320

Not only is the creation of rule-based systems laborious and
may require to cover an excessive number of cases, it often
leads to rigid structures that are unable to adapt well to new
situations. Even worse, some concepts are difficult or
impossible to formalize, such as human perception for image
classification.
Modern statistical ML algorithms98,128 such as deep

learning94,321−323 or kernel-based learning90,92,126,324,325 enable
models that freely adapt to knowledge that is implicitly
contained in data sets (in an abstract form) and thus offer a
more robust way of solving problems than rule-based
reasoning. For the field of molecular simulations, the potential
of ML methods may help to bridge the accuracy-efficiency gap
between first-principles electronic structure methods and
conventional (rule-based) FFs. Bringing both fields together
has raised many questions and still poses some fundamental
challenges for new generations of ML-FFs. At this point in
time, ML-FFs have already become a successful and practical
tool in computational chemistry.
Starting from a broad perspective, this review has focused on

the role of ML for constructing force fields and assessed what
can be achieved with these new techniques at the current stage
of development. This has been contrasted with problems that
are (so far) beyond the reach of present methods. Illustrative
examples of the relevant chemistry and ML concepts have been
discussed to demonstrate the practical usefulness that modern
ML techniques can bring to chemistry and physics. This
includes an overview of the most important considerations
behind the construction of modern ML-FFs such as the
incorporation of physical invariances, choice of ML algorithms,
and loss functions. Special attention has been given to the topic
of validating ML-FFs, which requires particular care in
scientific applications.326 Furthermore, a comprehensive list
of best practices, pitfalls, and challenges has been provided,
which will serve as a useful guideline for practitioners standing
on either side of this growing interdisciplinary field. These
“tricks of the trade”157 are often assumed to be obvious and
thus omitted from publications−here they have been
deliberately spelled out to avoid unnecessary barriers to
enter the field. Additionally, a small catalog of software tools
that can enable and accelerate the implementation of ML-FFs
has been provided as a pointer for readers wishing to adopt
ML methods in their own research.
While routinely performing computational studies of

condensed phase systems (e.g., proteins in solution) at the
highest levels of theory is still beyond reach, ML methods have
already made other “smaller dreams” a reality. Just a decade
ago, it would have been unthinkable to study the dynamics of
molecules like aspirin at coupled cluster accuracy. Today, a
couple hundred ab initio reference calculations are enough to
construct ML-FFs that reach this accuracy within a few tens of
wavenumbers.327 In the past, even if suitable reference data
was available, constructing accurate force fields was labor-
intensive and required human effort and expertise. Nowadays,
by virtue of automatic ML methods, the same task is as
effortless as the push of a button. Thanks to the speed-ups
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offered by ML methods over conventional approaches, studies
that previously required supercomputers to be feasible in a
realistic time frame287,289 can now be performed on a laptop
computer.69,109

In addition to enabling studies that were prohibitively
expensive in the past, ML methods have also led to new
chemical insights on systems that were thought to be already
well understood. Even relatively small molecules were shown
to display nontrivial electronic effects, influencing their
dynamics and allowing a better understanding of experimental
observations.161 Many other unknown chemical effects
potentially wait to be discovered by studies now possible
with ML-FFs. At the speed at which improvements to existing
ML-FFs are published, it is not unreasonable to expect
significant advances that will make similar studies possible for
larger systems and help realize many more “dreams” in the
near future.
Concluding, ML-FFs are a highly active line of research with

many unexplored avenues and attractive applications in
chemistry, with possibilities to contribute to a better
understanding of fundamental quantum chemical properties
and ample opportunity for novel theoretical, algorithmic, and
practical improvement. Given the success of this relatively
young interdisciplinary field, it is to be expected that ML-FFs
will become a fundamental part of modern computational
chemistry.
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Germany, 2019.
(241) Christensen, A. S.; von Lilienfeld, O. A. On The Role Of
Gradients For Machine Learning Of Molecular Energies And Forces.
Machine Learning: Science and Technology 2020, 1, 045018.
(242) Meyer, R.; Weichselbaum, M.; Hauser, A. W. Machine
Learning Approaches Toward Orbital-free Density Functional
Theory: Simultaneous Training On The Kinetic Energy Density
Functional And Its Functional Derivative. J. Chem. Theory Comput.
2020, 16, 5685−5694.
(243) Bergstra, J.; Bengio, Y. Random Search For Hyper-parameter
Optimization. J. Mach. Learn. Res. 2012, 13, 281−305.
(244) Prechelt, L. Neural Networks: Tricks of the trade; Springer,
1998; pp 55−69.
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